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Abstract. We study second-order optimality conditions for mathematical programs with equilibrium

constraints (MPEC). Firstly, we improve some second-order optimality conditions for standard nonlinear

programming problems using some newly discovered constraint qualifications in the literature, and apply

them to MPEC. Then, we introduce some MPEC variants of these new constraint qualifications, which

are all weaker than the MPEC linear independence constraint qualification, and derive several second-

order optimality conditions for MPEC under the new MPEC constraint qualifications. Finally, we discuss

the isolatedness of local minimizers for MPEC under very weak conditions.
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1 Introduction

MPEC is a constrained optimization problem in which the essential constraints are defined by some

parametric variational inequalities or parametric complementarity systems. It plays a very important

role in many fields, such as engineering design, economic equilibria, transportation science, multilevel

game, and mathematical programming itself. However, this kind of problems is generally difficult to deal

with because its constraints fail to satisfy the standard Mangasarian-Fromovitz constraint qualification

(MFCQ) at any feasible point [1].

A lot of research has been done during the last two decades to study the first-order optimality
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conditions for MPEC, such as Clarke (C-), Mordukhovich (M-), Strong (S-), Bouligrand (B-) stationarity

conditions; see, e.g., [1–8]. At the same time, algorithms for solving MPEC have been proposed by using

a number of approaches, such as sequential quadratic programming approach, penalty function approach,

relaxation approach, active set identification approach, etc.; see, e.g., [9–11] and the references therein

for more details.

In this paper, we focus on second-order optimality conditions for MPEC. First-order optimality

conditions tell us how the first derivatives of the functions involved are related to each other at locally

optimal solutions. However, for some feasible directions in the tangent cone such as the so-called critical

directions, we cannot determine from the first derivative information alone whether the objective

function increases or decreases in this direction. Second-order optimality conditions examine the second

derivative terms in the Taylor series expansions of the functions involved to see whether these extra

information resolves the issue of increase or decrease in the objective. Essentially, the second-order

optimality conditions are concerned with the curvature of the so-called MPEC Lagrangian function in

the critical directions. Moreover, second-order optimality conditions play important roles in

convergence analysis for numerical algorithms and the stability anslysis for MPEC; see, e.g., [12–18].

Compared with the first-order optimality conditions, there are very little research done with the

second-order optimality conditions for MPEC. Scheel and Scholtes [2] showed that S-stationary points

satisfying the refined second-order sufficient optimality conditions are strictly and locally optimal and

they derived a strong second-order necessary optimality condition under the MPEC strict MFCQ

(MPEC-SMFCQ). Izmailov [19] investigated second-order optimality conditions under the MPEC linear

independence constraint qualification (MPEC-LICQ). In this paper, we study second-order optimality

conditions for MPEC systematically. Note that, recently, several new constraint qualifications weaker

than the LICQ and MFCQ have been introduced for standard nonlinear programming problems. We

use these new constraint qualifications to derive some second-order optimality conditions for standard

nonlinear programming problems in Section 2 and apply the obtained results to MPEC. We further

introduce some MPEC variants of these new constraint qualifications, which are weaker than the

MPEC-LICQ, and derive some second-order optimality conditions for MPEC in terms of S- and

C-multipliers under these new MPEC constraint qualifications. Moreover, we establish some

relationships between various second-order optimality conditions for MPEC in terms of the classical

NLP multipliers and S-multipliers respectively. It is interesting to see that not all second-order
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optimality conditions in terms of the classical NLP multipliers and S-multipliers are equivalent. In

addition, unlike the first-order conditions, the second-order conditions in terms of singular multipliers

provide some information for optimality. Finally, we discuss the isolatedness of local minimizers under

some weak conditions. Since MPEC includes standard nonlinear programming problems as special

cases, some of our results are new even for nonlinear programming problems.

2 Second-order Optimality Conditions for Standard Nonlinear

Programming Problems

In this section, we review and improve various second-order optimality conditions for the standard

nonlinear programming problem

min f(x) (1)

s.t. g(x) ≤ 0, h(x) = 0,

where f : IRn → IR, g : IRn → IRp, and h : IRn → IRq are all twice differentiable functions. Given r ≥ 0,

we let Lr be the generalized Lagrangian function for (1) defined by

Lr(x, y) := rf(x) + g(x)Tλ+ h(x)Tµ,

where y := (λ, µ). For a mapping ψ : IRn → IRl and a vector x ∈ IRn, we denote by ∇ψ(x) the transposed

Jacobian of ψ at x. According to the terminology used by Clarke [20], we call y an index r multiplier for

(1) at a feasible point x iff (r, y) 6= 0 and

∇xLr(x, y) = 0, λ ≥ 0, g(x)Tλ = 0.

An index 0 multiplier is usually referred to as a singular multiplier (see, e.g., [21]) or an abnormal

multiplier (see, e.g., [20]). Denote by F the feasible region of (1). For x∗ ∈ F , letMr(x∗) denote the set

of all index r multipliers for (1) at x∗ and I∗g := {i | gi(x∗) = 0}. Moreover, the linearized cone of F at
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x∗ is defined by

L(x∗) := {d ∈ IRn | ∇gi(x∗)T d ≤ 0 for i ∈ I∗g , ∇hj(x∗)T d = 0 for j = 1, . . . , q},

and the critical cone at x∗ is defined by

C(x∗) := {d ∈ IRn | ∇f(x∗)T d ≤ 0} ∩ L(x∗),

respectively.

There are three types of second-order optimality conditions for (1). The definitions of strong second-

order optimality conditions are classical; see, e.g., [22,23]. The refined second-order optimality condition

was introduced in [24], and subsequently studied in [21]. The weak second-order optimality condition

was studied from theoretical and practical points of view in [25–27].

Definition 2.1 (Second-order optimality conditions for NLP) Let x∗ ∈ F .

(i) We say that the strong second-order necessary optimality condition (SSONC) holds at x∗ iff

M1(x∗) 6= ∅ and, for every y∗ ∈M1(x∗), there holds

dT∇2
xL

1(x∗, y∗)d ≥ 0, ∀d ∈ C(x∗).

We say that the strong second-order sufficient optimality condition (SSOSC) holds at x∗ iff, for

every y∗ ∈M1(x∗), there holds

dT∇2
xL

1(x∗, y∗)d > 0, ∀d ∈ C(x∗)\{0}.

(ii) We say that the refined second-order necessary optimality condition (RSONC) holds at x∗ iff, for

every d ∈ C(x∗), there exists y∗ ∈Mr(x∗) such that

dT∇2
xL

r(x∗, y∗)d ≥ 0.

We say that the refined second-order sufficient optimality condition (RSOSC) holds at x∗ iff, for
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every d ∈ C(x∗)\{0}, there exists y∗ ∈Mr(x∗) such that

dT∇2
xL

r(x∗, y∗)d > 0.

(iii) We say that the weak second-order necessary optimality condition (WSONC) holds at x∗ iff there

exists y∗ ∈M1(x∗) such that

dT∇2
xL

1(x∗, y∗)d ≥ 0, ∀d ∈ C̄(x∗),

where

C̄(x∗) := {d | ∇gi(x∗)T d = 0 for i ∈ I∗g , ∇hj(x∗)T d = 0 for j = 1, . . . , q}.

It is obvious that the following relationships hold:

SSOSC SSONC

⇓ ⇓ ⇓

RSOSC RSONC WSONC

Note that, for the sufficient optimality conditions to hold, no constraint qualification is required.

Proposition 2.1 (RSOSC for NLP) ( [21, Proposition 5.48]) Let x∗ ∈ F . If the RSOSC holds at x∗,

then x∗ is a locally optimal solution with quadratic growth, that is, there are constants c > 0 and δ > 0

such that

f(x) ≥ f(x∗) + c‖x− x∗‖2, ∀x ∈ F ∩ Bδ(x∗),

where Bδ(x∗) := {x | ‖x− x∗‖ < δ} with Euclidean vector norm ‖ · ‖.

However, for a necessary optimality condition to hold, a constraint qualification is required usually.

We next recall the definition of LICQ and its various relaxations. The CRCQ was introduced by Janin

in [28], and its relaxation RCRCQ was introduced by Minchenko and Stakhovski in [29]. The even

weaker WCR condition was introduced by Andreani et al in [30]. Note that the WCR condition is not a

constraint qualification [30].

Definition 2.2 (LICQ and its relaxations) Let x∗ ∈ F .

(i) We say that the linear independence constraint qualification (LICQ) holds at x∗ iff the family of
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gradients {∇gi(x∗),∇hj(x∗) | i ∈ I∗g , j = 1, · · · , q} is linearly independent.

(ii) We say that the constant rank constraint qualification (CRCQ) holds at x∗ iff there exists δ > 0 such

that, for each I ⊆ I∗g and J ⊆ {1, . . . , q}, the family of gradients {∇gi(x),∇hj(x) | i ∈ I, j ∈ J }

has the same rank for every x ∈ Bδ(x∗).

(iii) We say that the relaxed constant rank constraint qualification (RCRCQ) holds at x∗ iff there exists

δ > 0 such that, for each I ⊆ I∗g , the family of gradients {∇gi(x), ∇hj(x) | i ∈ I, j = 1, · · · , q} has

the same rank for every x ∈ Bδ(x∗).

(iv) We say that the weak constant rank condition (WCR) holds at x∗ iff there exists δ > 0 such that the

family of gradients {∇gi(x),∇hj(x) | i ∈ I∗g , j = 1, · · · , q} has the same rank for every x ∈ Bδ(x∗).

Recall that, for A := {a1, · · · , al} and B := {b1, · · · , bs}, (A,B) is said to be positively linearly

dependent iff there exist α and β such that α ≥ 0, (α, β) 6= 0, and

l∑
i=1

αia
i +

s∑
j=1

βjb
j = 0.

Otherwise, (A,B) is said to be positively linearly independent.

We now recall the positively linear independence constraint qualification (PLICQ) and its relaxations.

It is well-known that the MFCQ is equivalent to the PLICQ. The PLICQ is also called no nonzero

abnormal multiplier constraint qualification (NNAMCQ) or basic constraint qualification (Basic CQ).

The CPLD was introduced by Qi and Wei in [31] and was shown to be a constraint qualification by

Andreani et al. in [32]. The relaxed CPLD was introduced by Andreani et al. in [33]. The CRSC was

introduced by Andreani et al. in [34], and it is weaker than the RCPLD (see [34, Theorem 4.2]).

Definition 2.3 (MFCQ and its relaxations) Let x∗ ∈ F .

(i) We say that the positive linear independence constraint qualification (PLICQ) holds at x∗ iff the

family of gradients ({∇gi(x∗) | i ∈ I∗g}, {∇hj(x∗) | j = 1, · · · , q}) is positively linearly independent.

(ii) We say that the constant positive linear dependence condition (CPLD) holds at x∗ iff, for each

I ⊆ I∗g and J ⊆ {1, . . . , q}, whenever ({∇gi(x∗) | i ∈ I}, {∇hj(x∗) | j ∈ J }) is positively linearly

dependent, there exists δ > 0 such that, for every x ∈ Bδ(x∗), {∇gi(x),∇hj(x) | i ∈ I, j ∈ J } is

linearly dependent.
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(iii) Let J ⊆ {1, · · · , q} be such that {∇hj(x∗)}j∈J is a basis for span {∇hj(x∗)}qj=1. We say that the

relaxed constant positive linear dependence condition (RCPLD) holds at x∗ iff there exists δ > 0

such that

– {∇hj(x)}qj=1 has the same rank for each x ∈ Bδ(x∗);

– for each I ⊆ I∗g , if ({∇gi(x∗) | i ∈ I}, {∇hj(x∗) | j ∈ J }) is positively linearly dependent, then

{∇gi(x),∇hj(x) | i ∈ I, j ∈ J } is linearly dependent for each x ∈ Bδ(x∗).

(iv) Let J− := {i ∈ I∗g | − ∇gi(x∗) ∈ L(x∗)o}, where o stands for the polar operation. We say that the

constant rank of the subspace component condition (CRSC) holds at x∗ iff there exists δ > 0 such

that the family of gradients {∇gi(x),∇hj(x) | i ∈ J−, j ∈ {1, · · · , q}} has the same rank for every

x ∈ Bδ(x∗).

Note that the CPLD can be regarded as a complement for the PLICQ. In fact, it is easy to see

that the CPLD holds at x∗ if the PLICQ holds or, for each I ⊆ I∗g and J ⊆ {1, . . . , q}, whenever

({∇gi(x∗) | i ∈ I}, {∇hj(x∗) | j ∈ J }) is positively linearly dependent, there exists δ > 0 such that

{∇gi(x),∇hj(x) | i ∈ I, j ∈ J } is linearly dependent for every x ∈ Bδ(x∗). It is similar for the RCPLD

and CRSC. See [33,34] for the relations among the above constraint qualifications.

In the literature, the SSONC requires the LICQ. A counterexample due to Arutyunov [35] (see also

[36]) shows that one cannot relax LICQ to MFCQ. Recently, Minchenko and Stakhovski [29] showed that

the SSONC holds under the RCRCQ, which is weaker than the LICQ.

Proposition 2.2 (SSONC for NLP) [29, Theorem 6] Let x∗ be a locally optimal solution of (1). If

the RCRCQ holds at x∗, then x∗ satisfies the SSONC with r = 1.

In the following, we improve the standard results for the RSONC. We first give an equivalent form of

the Clarke calmness condition [20]. See [37] for the equivalence between the Clarke calmness and exact

penalization.

Definition 2.4 (Calmness) Let x∗ be a locally optimal solution of (1). We say that problem (1) is

(Clarke) calm at x∗ iff x∗ is also a locally optimal solution of the penalized problem

min
x

f(x) + κ(max{g1(x), · · · , gp(x), 0}+ ‖h(x)‖) (2)
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for some positive constant κ.

Note that, since the concept involves the objective function, the calmness condition is not a constraint

qualification in the classical sense. It is just a sufficient condition under which the first-order conditions

and the RSONC with r = 1 hold at a local minimizer. The calmness condition may hold even when

Guignard constraint qualification [38], which is the weakest constraint qualification, does not hold. For

example, it is easy to verify that the optimization problem

min x1 + x2 s.t. (x1 − x2)2 = 0, x1 + 1 ≥ 0, x2 + 1 ≥ 0

is calm at the optimal solution (−1,−1), but the Guignard constraint qualification fails at the point.

The standard constraint qualification for the RSONC with r = 1 to hold at a local minimizer is the

MFCQ; see, e.g., [21]. The following theorem shows that the RSONC with r = 1 actually holds at a local

minimizer under the calmness condition.

Theorem 2.1 (RSONC for NLP) Let x∗ be a locally optimal solution of (1). Then the RSONC holds

at x∗. Moreover, if (1) is calm at x∗, then x∗ satisfies the RSONC with r = 1.

Proof. The fact that the RSONC holds at any local solution x∗ can be found in [21, Proposition 5.48].

We now suppose that (1) is calm at x∗. By the calmness condition, there exists κ > 0 such that x∗ is a

locally optimal solution of (2). It is easy to see that (x, t, s) = (x∗, 0, 0) is a locally optimal solution of

the problem

min f(x) + κ(t+

q∑
j=1

sj)

s.t. t ≥ gi(x), i = 1, · · · , p,

t ≥ 0,

sj ≥ hj(x), sj ≥ −hj(x), j = 1, · · · , q.

It is straightforward to verify that the set of nonzero singular multipliers for the above problem at (x∗, 0, 0)

is empty, and hence the set of index 1 multipliers must be nonempty by virtue of the Fritz John necessary

optimality condition. It follows immediately that the MFCQ holds, and then the RSONC holds for the

above problem at (x∗, 0, 0) with r = 1. By direct calculation, the critical cone of the above problem at
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(x∗, 0, 0) is

Ĉ(x∗, 0, 0) =


(d1, d2, d3)

∣∣∣∣∣∣∣∣∣∣∣
∇f(x∗)T d1 + κd2 + κeT d3 ≤ 0, −d2 ≤ 0

∇gi(x∗)T d1 − d2 ≤ 0 i ∈ I∗g

∇hj(x∗)T d1 − d3j ≤ 0, −∇hj(x∗)T d1 − d3j ≤ 0 j = 1, · · · , q


.

For every d ∈ C(x∗), (d, 0, 0) ∈ Ĉ(x∗, 0, 0) holds clearly. On the other hand, the fact that (λg, µ, λh, λ−h) is

a multiplier for the above problem implies that (λg, λh−λ−h) is a multiplier for (1). It follows immediately

that the RSONC holds for (1) with r = 1.

Recently, Andreani et al. showed that the CRSC implies the existence of local error bound in [34,

Theorem 5.4]. It follows from the Clarke’s exact penalty principle [20, Proposition 2.4.3] that the existence

of local error bound implies the calmness condition; see, e.g., [3, Proposition 4.2]. Consequently, from

Theorem 2.1, we get the following result immediately. Note that, since the CRSC is much weaker than

the MFCQ, our result improves the classical result.

Corollary 2.1 (RSONC under CRSC) Let x∗ be a locally optimal solution of (1). If the CRSC

condition holds at x∗, then the RSONC holds at x∗ with r = 1.

Robinson [39] showed the isolatedness of KKT points under the condition that the MFCQ and SSOSC

hold. Qi and Wei [31] showed that a KKT point satisfying the CPLD and SSOSC in the sense of

Robinson [40], which is stronger than the one in this paper, is isolated. Since the RCPLD is weaker than

both CPLD and MFCQ, the following theorem improves the above results. Since the proof is a simplified

version of Theorem 4.1, we omit it here.

Theorem 2.2 (Isolatedness under RCPLD) Suppose that x∗ ∈ F is a KKT point, i.e.,M1(x∗) 6= ∅.

If the RCPLD and SSOSC hold at x∗, then x∗ is an isolated KKT point of (1).

Recall that the tangent cone of a set X at x∗ ∈ X is a closed cone defined by

TX(x∗) := { d | ∃tk ≥ 0 and xk →X x∗ s.t. tk(xk − x∗)→ d},

where xk →X x∗ means that xk → x∗ with xk ∈ X for each k.

Lemma 2.1 [33, Theorem 3] If the RCPLD holds at x∗ ∈ F , then the Abadie CQ holds at x∗, i.e.,
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TF (x∗) = LF (x∗).

The following result improves Theorem 3.1 of [30] in that the MFCQ assumption is replaced by the

weaker condition M1(x∗) 6= ∅.

Theorem 2.3 (WSONC for NLP) Let x∗ be a locally optimal solution of (1). If the WCR condition

holds at x∗ and M1(x∗) 6= ∅, then x∗ satisfies the WSONC.

Proof. For any given y∗ ∈M1(x∗), we define the set

F̂ := {x | gi(x) = 0 for i ∈ I∗g , hj(x) = 0 for j = 1, · · · , q}.

Its linearized cone at x∗ is given by

LF̂ (x∗) = {d | ∇gi(x∗)T d = 0 for i ∈ I∗g , ∇hj(x∗)T d = 0 for j = 1, · · · , q}.

By the WCR assumption, the RCPLD holds at x∗ ∈ F̂ . It follows from Lemma 2.1 that LF̂ (x∗) = TF̂ (x∗).

For any given d ∈ LF̂ (x∗), we have from the definition of tangent cone that there exist tk ≥ 0 and

xk →F̂ x∗ such that limk→∞ tk(xk − x∗) = d. By the Taylor series expansion, we have

L1(xk, y∗) = L1(x∗, y∗) +∇xL1(x∗, y∗)T (xk − x∗) +
1

2
(xk − x∗)T∇2

xL
1(x∗, y∗)(xk − x∗)

+o(‖xk − x∗‖2). (3)

Since xk ∈ F̂ and y∗ ∈ M1(x∗), we have L1(xk, y∗) = f(xk), L1(x∗, y∗) = f(x∗), and ∇xL1(x∗, y∗) = 0.

Thus, from (3), we have

f(xk) = f(x∗) +
1

2
(xk − x∗)T∇2

xL
1(x∗, y∗)(xk − x∗) + o(‖xk − x∗‖2). (4)

Noting that xk ∈ F for every k sufficiently large and x∗ is locally optimal, we have f(xk) ≥ f(x∗) when

k is sufficiently large. It follows from (4) that

(xk − x∗)T∇2
xL

1(x∗, y∗)(xk − x∗) + o(‖xk − x∗‖2) ≥ 0.
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Multiplying it by t2k and taking a limit, we get the desired result.

Consider the mathematical program with equilibrium constraints (MPEC)

min f(x)

s.t. g(x) ≤ 0, h(x) = 0, (5)

0 ≤ G(x) ⊥ H(x) ≥ 0,

where {f, g, h} are assumed as above, G,H : IRn → IRm are all twice differentiable functions, and a ⊥ b

means that the vector a is perpendicular to the vector b. We can treat the MPEC (5) as the following

nonlinear programming problem with equality and inequality constraints:

min f(x)

s.t. g(x) ≤ 0, h(x) = 0, (6)

G(x) ≥ 0, H(x) ≥ 0, G(x)TH(x) ≤ 0.

In order to facilitate the notation, for a given feasible point x∗ of (6), we let I∗g be the same as above and


I∗ := { i | Gi(x∗) = 0 < Hi(x

∗)},

J ∗ := { i | Gi(x∗) = 0 = Hi(x
∗)},

K∗ := { i | Gi(x∗) > 0 = Hi(x
∗)}.

Obviously, {I∗,J ∗,K∗} is a partition of {1, 2, · · · ,m}. For simplicity, we also denote by Lr, C, and Mr

the generalized Lagrangian, the critical cone, and the set of all r index multipliers of (6), respectively. It

is easy to distinguish them from the context. In particular, the generalized Lagrangian of (6) is

Lr(x, λ, µ, α, β, ξ) := rf(x) + g(x)Tλ+ h(x)Tµ−G(x)Tα−H(x)Tβ + ξG(x)TH(x),
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the critical cone associated with a feasible point x∗ of (6) is

C(x∗) :=


d

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∇f(x∗)T d ≤ 0

∇gi(x∗)T d ≤ 0 if i ∈ I∗g , ∇hi(x∗)T d = 0 for i = 1, 2, · · · , q

∇Gi(x∗)T d = 0 if i ∈ I∗, ∇Hi(x
∗)T d = 0 if i ∈ K∗

∇Gi(x∗)T d ≥ 0 if i ∈ J ∗, ∇Hi(x
∗)T d ≥ 0 if i ∈ J ∗


,

and Mr(x∗) is the set of all index r multipliers (λ, µ, u, v) such that 0 6= (x∗, λ, µ, u, v) satisfies the

following Fritz-John optimality condition of (6):


∇xLr1(x, λ, µ, α, β, ξ) = 0,

min(λ,−g(x)) = 0, h(x) = 0, ξ ≥ 0,

min(α,G(x)) = 0, min(β,H(x)) = 0, G(x)TH(x) = 0.

(7)

For (6), although the MFCQ is not satisfied, some weaker constraint qualifications may hold; see

e.g. [41, 42]. The following example illustrates that the RCRCQ may hold and, by Proposition 2.2, the

SSONC holds.

Example 2.1 Consider the problem

min (x1 − 1)2 + (x2 + 1)2

s.t. x1 − 1 = 0,

x1 ≥ 0, x2 ≥ 0, x1x2 ≤ 0.

The only feasible point of the problem is x∗ = (1, 0) and the LICQ fails at x∗. Set h(x) := x1 − 1,

g1(x) := −x1, g2(x) := −x2, and g3(x) := x1x2. Then the active index set of inequality constraints at x∗

is {2, 3}, which contains ∅, {2}, {3}, {2, 3} as subsets. It is not hard to see that the families of gradients

{∇h(x∗)} , {∇h(x),∇g2(x∗)}, {∇h(x),∇g3(x∗)}, {∇h(x),∇g2(x∗),∇g3(x∗)}

have rank one, two, two, two near x∗, respectively. Thus, the RCRCQ holds at x∗.

Note that there always exist singular NLP multipliers for the MPEC (5) since the MFCQ does not
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hold at every feasible point. It is interesting that, although a singular NLP multiplier may not be useful

for first-order optimality, the second-order optimality conditions in terms of singular NLP multipliers

may provide useful information. We illustrate this point by using the following example.

Example 2.2 Consider the problem

min −x2

s.t. x1 − x2 = 0,

x1 ≥ 0, x2 ≥ 0, x1x2 ≤ 0.

The only feasible solution, which is certainly the only optimal solution, is x∗ = (0, 0). The critical cone

is

C(x∗) = {d ∈ IR2 | − d2 ≤ 0, d1 − d2 = 0,−d1 ≤ 0,−d2 ≤ 0}

= {d ∈ IR2 | d1 = d2, d1 ≥ 0, d2 ≥ 0}.

It is obvious that (µ, α, β, ξ) with µ = α = β = 0, ξ = 1 is a singular multiplier. For such a singular

multiplier, we have

∇2
xL

0(x∗, µ, α, β, ξ) = ∇2ϕ(x1, x2) =

 0 1

1 0

 ,

where ϕ(x1x2) := x1x2. Hence, for each d ∈ C(x∗) \ {0}, we have d = (h, h) with h > 0. Therefore,

dT∇2
xL

0(x∗, µ, α, β, ξ)d = 2h2 > 0

holds for each d ∈ C(x∗) \ {0}. That is, the RSOSC with r = 0 is satisfied.

The above two examples illustrate that, in some cases, we can apply the standard results for NLP

to the MPEC (5) directly. However, since the Abadie CQ for (6) is only satisfied in fairly restrictive

circumstances (see, e.g., [42]) and the above constraint qualifications imply the Abadie CQ, it is more

reasonable to investigate the properties of (5) from the MPEC structure and specificity. In the next

13



section, we investigate the MPEC second-order optimality conditions.

3 MPEC Second-order Optimality Conditions

First, we review the first-order optimality conditions for MPEC. It is easy to see that the MPEC (5) can

be rewritten as the following optimization problem with a geometric constraint:

min f(x) (8)

s.t. F (x) ∈ Λ,

where

F (x) := (g(x), h(x),Ψ(x))
T
, Ψ(x) := (−G1(x),−H1(x), · · · ,−Gm(x),−Hm(x)),

and

Λ :=]−∞, 0]p × {0}q × Cm, C := { (a, b) ∈ IR2 | 0 ≤ −a ⊥ −b ≥ 0}.

In the rest of the paper, we denote by X the feasible region of the MPEC (5) and define the generalized

MPEC-Lagrangian function of the MPEC (5) as

LrMPEC(x, λ, µ, u, v) := rf(x) + g(x)Tλ+ h(x)Tµ−G(x)Tu−H(x)T v

= rf(x) + F (x)T y, y := (λ, µ, u, v).

We need the following normal cones.

Definition 3.1 [43, 44] The regular normal cone of a set Ω ⊂ IRn at x∗ ∈ Ω is a closed convex cone

defined by

N̂Ω(x∗) := {d | dT (x− x∗) ≤ o(‖x− x∗‖) for each x ∈ Ω},
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and the limiting normal cone of Ω at x∗ ∈ Ω is a closed cone defined by

NΩ(x∗) := {d | d = lim
k→∞

dk with dk ∈ N̂Ω(xk) and xk →Ω x∗}.

Definition 3.2 [2, 4–6] Let x∗ ∈ X. We say that x∗ is Clarke stationary (C-stationary) to (5) iff there

exists (λ, µ, u, v) satisfying



∇xL1
MPEC(x∗, λ, µ, u, v) = 0,

λ ≥ 0, g(x∗)Tλ = 0,

ui = 0, i ∈ K∗,

vi = 0, i ∈ I∗,

either uivi ≥ 0, i ∈ J ∗.

(9)

We say that x∗ is Mordukhovich stationary (M-stationary) to (5) iff there exists (λ, µ, u, v) satisfying



∇xL1
MPEC(x∗, λ, µ, u, v) = 0,

λ ≥ 0, g(x∗)Tλ = 0,

ui = 0, i ∈ K∗,

vi = 0, i ∈ I∗,

either uivi = 0 or ui > 0, vi > 0, i ∈ J ∗.

(10)

We say that x∗ is strongly stationary (S-stationary) to (5) iff there exists (λ, µ, u, v) satisfying



∇xL1
MPEC(x∗, λ, µ, u, v) = 0,

λ ≥ 0, g(x∗)Tλ = 0,

ui = 0, i ∈ K∗,

vi = 0, i ∈ I∗,

ui ≥ 0, vi ≥ 0, i ∈ J ∗.

(11)

By straightforward calculation, we can get the following result (see, e.g., [3, 8]).
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Proposition 3.1 For any (a, b) ∈ C, we have

TC(a, b) =


(d1, d2)

∣∣∣∣∣∣∣∣∣∣∣
d1 = 0, d2 ∈ IR if a = 0 > b

d1 ∈ IR, d2 = 0 if a < 0 = b

(d1, d2) ∈ C if a = b = 0


,

N̂C(a, b) =


(d1, d2)

∣∣∣∣∣∣∣∣∣∣∣
d1 ∈ IR, d2 = 0 if a = 0 > b

d1 = 0, d2 ∈ IR if a < 0 = b

d1 ≥ 0, d2 ≥ 0 if a = b = 0


,

NC(a, b) =


(d1, d2)

∣∣∣∣∣∣∣∣∣∣∣
d1 ∈ IR, d2 = 0 if a = 0 > b

d1 = 0, d2 ∈ IR if a < 0 = b

either d1 > 0, d2 > 0 or d1d2 = 0 if a = b = 0


.

Based on the above result, we can easily obtain the following result.

Proposition 3.2 Let x∗ ∈ X. The following statements are true:

(a) The MPEC linearized cone

LMPEC(x∗) := {d | ∇F (x∗)T d ∈ TΛ(F (x∗))}

=


d

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∇gi(x∗)T d ≤ 0, i ∈ I∗g

∇hi(x∗)T d = 0, i = 1, · · · , q

∇Gi(x∗)T d = 0, i ∈ I∗

∇Hi(x
∗)T d = 0, i ∈ K∗

0 ≤ ∇Gi(x∗)T d ⊥ ∇Hi(x
∗)T d ≥ 0, i ∈ J ∗


.

(b) The M-stationarity condition is equivalent to

∇f(x∗) +∇F (x∗)y = 0, y ∈ NΛ(F (x∗)).

(c) The S-stationarity condition is equivalent to

∇f(x∗) +∇F (x∗)y = 0, y ∈ N̂Λ(F (x∗)).
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We now study the second-order optimality conditions for the MPEC (5) by C-/M-/S-multipliers. To

this end, we define the MPEC critical cone at x∗ ∈ X as

CMPEC(x∗) := LMPEC(x∗) ∩ {d | ∇f(x∗)T d ≤ 0}. (12)

For a given x∗ ∈ X, we denote by Mr
S(x∗) the set of all index r S-multipliers (λ, µ, u, v) such that

(r, λ, µ, u, v) 6= 0 and (11) is satisfied with L1
MPEC replaced by LrMPEC , denote byMr

M (x∗) the set of all

index r M-multipliers (λ, µ, u, v) such that (r, λ, µ, u, v) 6= 0 and (10) is satisfied with L1
MPEC replaced by

LrMPEC , and denote byMr
C(x∗) the set of all index r C-multipliers (λ, µ, u, v) such that (r, λ, µ, u, v) 6= 0

and (9) is satisfied with L1
MPEC replaced by LrMPEC , respectively.

Definition 3.3 Let x∗ ∈ X.

(i) We say that the S-multiplier strong second-order necessary condition (S-SSONC) holds at x∗ iff

M1
S(x∗) 6= ∅ and, for every y∗ ∈M1

S(x∗), there holds

dT∇2
xL

1
MPEC(x∗, y∗)d ≥ 0, ∀d ∈ CMPEC(x∗).

We say that the S-multiplier strong second-order sufficient condition (S-SSOSC) holds at x∗ iff, for

every y∗ ∈M1
S(x∗), there holds

dT∇2
xL

1
MPEC(x∗, y∗)d > 0, ∀d ∈ CMPEC(x∗)\{0}.

(ii) We say that the S-multiplier refined second-order necessary condition (S-RSONC) holds at x∗ iff,

for every d ∈ CMPEC(x∗), there exists y∗ ∈Mr
S(x∗) such that

dT∇2
xL

r
MPEC(x∗, y∗)d ≥ 0.

We say that the S-multiplier refined second-order sufficient condition (S-RSOSC) holds at x∗ iff,

for every d ∈ CMPEC(x∗)\{0}, there exists y∗ ∈Mr
S(x∗) such that

dT∇2
xL

r
MPEC(x∗, y∗)d > 0.
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(iii) We say that the S-multiplier weak second-order necessary condition (S-WSONC) holds at x∗ iff

there exists y∗ ∈M1
S(x∗), there holds

dT∇2
xL

1
MPEC(x∗, y∗)d ≥ 0, ∀d ∈ C̄MPEC(x∗),

where

C̄MPEC(x∗) :=

d
∣∣∣∣∣∣∣
∇gi(x∗)T d = 0 if i ∈ I∗g , ∇hi(x∗)T d = 0 for i = 1, · · · , q

∇Gi(x∗)T d = 0 if i ∈ I∗ ∪ J ∗, ∇Hi(x
∗)T d = 0 if i ∈ K∗ ∪ J ∗

 .

It is well-known that there is a connection between the NLP multipliers and the S-multipliers; see,

e.g., [12,17]. We next investigate the connection between the classical second-order optimality condition

and the S-multiplier second-order optimality condition. Although the equation (13) in Theorem 3.1 is

given in [19, Proposition 1], we give a proof for completeness.

Theorem 3.1 (a) Let d ∈ CMPEC(x∗) and (λ, µ, α, β, ξ) ∈Mr(x∗). If

dT∇2
xL

r(x∗, λ, µ, α, β, ξ)d ≥ (>) 0,

then there exists (u, v) such that (λ, µ, u, v) ∈Mr
S(x∗) and

dT∇2
xL

r
MPEC(x∗, λ, µ, u, v)d ≥ (>) 0.

(b) Let d ∈ C(x∗) and (λ, µ, u, v) ∈Mr
S(x∗). If

dT∇2
xL

r
MPEC(x∗, λ, µ, u, v)d ≥ (>) 0,

then there exists (α, β, ξ) such that (λ, µ, α, β, ξ) ∈Mr(x∗) and

dT∇2
xL

r(x∗, λ, µ, α, β, ξ)d ≥ (>) 0.
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Proof. Set u := α− ξH(x∗) and v := β − ξG(x∗) with

ξ ≥ max

(
0,max
i∈I∗

(− ui
Hi(x∗)

),max
i∈K∗

(− vi
Gi(x∗)

)

)
.

Then (λ, µ, u, v) ∈Mr
S(x∗) if and only if (λ, µ, α, β, ξ) ∈Mr(x∗); see, e.g., [12,17]. By direct calculation,

we get

∇2
xL

r(x∗, λ, µ, α, β, ξ) = ∇2
xL

r
MPEC(x∗, λ, µ, u, v)

+ξ

m∑
i=1

(
∇Gi(x∗)∇Hi(x

∗)T +∇Hi(x
∗)∇Gi(x∗)T

)
,

and hence

dT∇2
xL

r(x∗, λ, µ, α, β, ξ)d = dT∇2
xL

r
MPEC(x∗, λ, µ, u, v)d+ 2ξ

m∑
i=1

∇Gi(x∗)T d ∇Hi(x
∗)T d. (13)

Therefore, if d ∈ CMPEC(x∗), we have

dT∇2
xL

r(x∗, λ, µ, α, β, ξ)d = dT∇2
xL

r
MPEC(x∗, λ, µ, u, v)d,

which means that (a) is true.

We next show (b). Let d ∈ C(x∗). If d ∈ CMPEC(x∗), then the result follows from (13) immediately.

If d ∈ C(x∗) \ CMPEC(x∗), there must exist a j0 ∈ J ∗ such that Gj0(x∗)T d > 0 and Hj0(x∗)T d > 0.

Moreover, by d ∈ C(x∗), we have ∇Gi(x∗)T d∇Hi(x
∗)T d ≥ 0 for each i. Thus, the result must hold if ξ

is sufficiently large.

Corollary 3.1 The RSONC (or RSOSC/WSONC) holds at x∗ for (6) if and only if the S-RSONC (or

S-RSOSC/S-WSONC) holds at x∗. Moreover, if the SSOSC (or SSONC) holds at x∗ for (6), then the

S-SSOSC (or S-SSONC) holds at x∗.

Proof. The first part of the corollary is obvious from Theorem 3.1. We next show that the SSOSC

implies the S-SSOSC. For any given (λ, µ, u, v) ∈Mr
S(x∗) and d ∈ CMPEC(x∗), there exists (α, β, γ) such

that (λ, µ, α, β, γ) ∈ Mr(x∗). Since the SSOSC holds at x∗ and CMPEC(x∗) ⊆ C(x∗), we have from (1)

of Theorem 3.1 that the S-SSOSC holds. In a similar way, we can show that the SSONC implies the
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S-SSONC.

The following example shows that the S-SSOSC does not imply the SSOSC.

Example 3.1 Consider the problem

min x1x2

s.t. x2 ≥ 0,

0 ≤ x1 − x2 ⊥ x1 + x2 ≥ 0.

It is obvious that x∗ = (0, 0) is an optimal solution. Since, for any S-multiplier (λ, u, v),

∇2
xL

1
MPEC(x∗, λ, u, v) =

 0 1

1 0


and the MPEC critical cone is CMPEC(x∗) = {(d1, d2) | d1 = d2 ≥ 0}, it is not hard to know that the

S-SSOSC holds at x∗. On the other hand, it is obvious that (λ, α, β, ξ) with λ = α = β = ξ = 0 is an

NLP-multiplier. The critical cone is C(x∗) = {(d1, d2) | d1 − d2 ≥ 0, d2 ≥ 0}. Picking d̄ = (1, 0), we have

d̄T∇2
xL

1(x∗, λ, α, β, ξ)d̄ = 0 ≯ 0,

which implies that the SSOSC does not hold at x∗.

The following example shows that the S-SSONC does not imply the SSONC.

Example 3.2 Consider the problem

min −x2
1 − x2

2

s.t. x1 − x2 = 0,

0 ≤ x1 ⊥ x2 ≥ 0.

It is obvious that the only feasible point x∗ = (0, 0) is an optimal solution. Since the MPEC critical

cone at x∗ is CMPEC(x∗) = {(d1, d2) | d1 = d2 = 0}, the S-SSONC holds at x∗ for any S-multiplier.

On the other hand, it is obvious that (λ, α, β, ξ) = (0, 0, 0, 0) is an NLP-multiplier. The critical cone is
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C(x∗) = {(d1, d2) | d1 = d2 ≥ 0}. Picking d̄ = (1, 1), we have

d̄T∇2
xL

1(x∗, λ, α, β, ξ)d̄ = −4 < 0,

which implies that the SSONC does not hold at x∗.

Scheel and Scholtes [2, Theorem 7 (2)] showed that the S-RSOSC at a feasible point with r = 1

implies that the point is a strict local minimizer. In what follows, we show that the second-order sufficient

condition in terms of either the S-multiplier or the singular S-multiplier provides a useful information for

local optimality. This is very interesting for MPEC since singular S-multipliers always exist.

Theorem 3.2 Let x∗ ∈ X. If the S-RSOSC holds at x∗, then there exist δ > 0 and c > 0 such that

f(x) ≥ f(x∗) + c‖x− x∗‖2, ∀x ∈ X ∩ Bδ(x∗).

Proof. By Corollary 3.1, the S-RSOSC holds at x∗ if and only if the RSOSC holds at x∗. The conclusion

follows from Proposition 2.1 immediately.

In order to study second-order necessary optimality conditions for MPEC, we next extend various

relaxations of LICQ for (1) in Definition 2.2 to the MPEC (5). All these conditions are weaker than

the MPEC-LICQ and MPEC Linear CQ. The latter means that all constraint functions are affine [4].

The MPEC-CRCQ has been studied to analyze convergence of relaxation methods for solving MPEC

in [45,46]. The other weaker constraint qualifications may be also useful in convergence analysis.

Definition 3.4 Let x∗ ∈ X.

(i) We say that the MPEC constant rank constraint qualification (MPEC-CRCQ) is satisfied at x∗ iff

there exists δ > 0 such that, for any I1 ⊆ I∗g , I2 ⊆ {1, · · · , q}, I3 ⊆ I∗ ∪ J ∗, and I4 ⊆ K∗ ∪ J ∗,

the family of gradients

{
∇gi(x),∇hj(x),∇Gı(x),∇H(x)

∣∣ i ∈ I1, j ∈ I2, ı ∈ I3,  ∈ I4

}

has the same rank for each x ∈ Bδ(x∗).

(ii) We say that the MPEC relaxed constant rank constraint qualification (MPEC-RCRCQ) is satisfied
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at x∗ iff there exists δ > 0 such that, for any I1 ⊆ I∗g and I2, I3 ⊆ J ∗, the family of gradients

{
∇gi(x),∇hj(x),∇Gı(x),∇H(x)

∣∣ i ∈ I1, j = 1, · · · , q, ı ∈ I∗ ∪ I2,  ∈ K∗ ∪ I3

}

has the same rank for each x ∈ Bδ(x∗).

(iii) We say that the MPEC weak relaxed constant rank condition (MPEC-WRCR) is satisfied at x∗ iff

there exists δ > 0 such that, for any I ⊆ I∗g , the family of gradients

{
∇gi(x),∇hj(x),∇Gı(x),∇H(x)

∣∣ i ∈ I, j = 1, · · · , q, ı ∈ I∗ ∪ J ∗,  ∈ K∗ ∪ J ∗
}

has the same rank for each x ∈ Bδ(x∗).

(iv) We say that the MPEC weak constant rank condition (MPEC-WCR) is satisfied at x∗ iff there

exists δ > 0 such that the family of gradients

{
∇gi(x),∇hj(x),∇Gı(x),∇H(x)

∣∣ i ∈ I∗g , j = 1, · · · , q, ı ∈ I∗ ∪ J ∗,  ∈ K∗ ∪ J ∗
}

has the same rank for each x ∈ Bδ(x∗).

We are ready to study the second-order necessary conditions for MPEC. To this end, we introduce

two sets. For any y∗ ∈M1
C(x∗), define

X̃ :=


x

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

gi(x) = 0 if i ∈ I∗g and λ∗i > 0, gi(x) ≤ 0 if i ∈ I∗g and λ∗i = 0

hi(x) = 0 for i = 1, · · · , q, Gi(x) = 0 if i ∈ I∗, Hi(x) = 0 if i ∈ K∗

Gi(x) = 0 if i ∈ J ∗ and u∗i 6= 0, Hi(x) = 0 if i ∈ J ∗ and v∗i 6= 0,

0 ≤ Gi(x) ⊥ Hi(x) ≥ 0 if i ∈ J ∗


.
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Its linearized cone at x∗ is given by

C̃(x∗) =


d

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∇gi(x∗)T d = 0 if i ∈ I∗g and λ∗i > 0, ∇gi(x∗)T d ≤ 0 if i ∈ I∗g and λ∗i = 0

∇hi(x∗)T d = 0 for i = 1, 2, · · · , q

∇Gi(x∗)T d = 0 if i ∈ I∗, ∇Hi(x
∗)T d = 0 if i ∈ K∗

∇Gi(x∗)T d = 0 if i ∈ J ∗ and u∗i 6= 0, ∇Hi(x
∗)T d = 0 if i ∈ J ∗ and v∗i 6= 0,

0 ≤ ∇Gi(x∗)T d ⊥ ∇Hi(x
∗)T d ≥ 0 if i ∈ J ∗


.

It is easy to see that X̃ is a subset of the feasible region X locally around x∗. In the case of nonlinear

programs, C̃(x∗) is equal to the classical critical cone. The following second-order condition holds without

any constraint qualification.

Theorem 3.3 Let x∗ be a locally optimal solution of (5) and y∗ ∈M1
C(x∗). Then

dT∇2
xL

1
MPEC(x∗, y∗)d ≥ 0, ∀d ∈ TX̃(x∗).

Proof. Let d ∈ TX̃(x∗). By definition, there exist tk ≥ 0 and xk →X̃ x∗ such that lim
k→∞

tk(xk−x∗) = d.

By the Taylor series expansion, we have

L1
MPEC(xk, y∗) = L1

MPEC(x∗, y∗) +∇xL1
MPEC(x∗, y∗)T (xk − x∗)

+
1

2
(xk − x∗)T∇2

xL
1
MPEC(x∗, y∗)(xk − x∗) + o(‖xk − x∗‖2). (14)

Since xk ∈ X̃ and y∗ ∈ M1
C(x∗), we have L1

MPEC(xk, y∗) = f(xk), ∇xL1
MPEC(x∗, y∗) = 0, and

L1
MPEC(x∗, y∗) = f(x∗). Thus, we have from (14) that

f(xk) = f(x∗) +
1

2
(xk − x∗)T∇2

xL
1
MPEC(x∗, y∗)(xk − x∗) + o(‖xk − x∗‖2). (15)

Since xk ∈ X for each k sufficiently large and x∗ is locally optimal, we have f(xk) ≥ f(x∗) when k is

sufficiently large. Thus, it follows from (15) that

(xk − x∗)T∇2
xL

1
MPEC(x∗, y∗)(xk − x∗) + o(‖xk − x∗‖2) ≥ 0.
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Multiplying it by t2k and taking a limit, we get the desired result.

As a consequence, we have the following strong second-order necessary optimality condition.

Corollary 3.2 Let x∗ be a locally optimal solution of (5) and y∗ ∈ M1
C(x∗). If the Abadie CQ for X̃

holds at x∗, i.e., C̃(x∗) ⊆ TX̃(x∗), then

dT∇2
xL

1
MPEC(x∗, y∗)d ≥ 0, ∀d ∈ C̃(x∗).

We now investigate the conditions under which C̃(x∗) ⊆ TX̃(x∗) holds.

The following result shows that the MPEC-RCRCQ is a constraint qualification for M-stationarity.

Lemma 3.1 Suppose that the MPEC-RCRCQ holds at x∗ ∈ X. Then the MPEC Abadie CQ holds at

x∗, i.e., TX(x∗) = LMPEC(x∗).

Proof. Let P(J ∗) := {(J ∗1 ,J ∗2 ) | J ∗1 ∪ J ∗2 = J ∗,J ∗1 ∩ J ∗2 = ∅}. For each partition (J ∗1 ,J ∗2 ) ∈ P(J ∗),

we consider the following restricted problem associated with (5):

min f(x)

s.t. g(x) ≤ 0, h(x) = 0,

GI∗∪J ∗
1

(x) = 0, GJ ∗
2

(x) ≥ 0,

HK∗∪J ∗
2

(x) = 0, GJ ∗
1

(x) ≥ 0.

(16)

Denote by X(J ∗1 ,J ∗2 ) the feasible region of (16). It is not difficult to see that

TX(x∗) =
⋃

(J ∗
1 ,J ∗

2 )∈P(J ∗)

TX(J ∗
1 ,J ∗

2 )(x
∗), LMPEC(x∗) =

⋃
(J ∗

1 ,J ∗
2 )∈P(J ∗)

LX(J ∗
1 ,J ∗

2 )(x
∗), (17)

where LX(J ∗
1 ,J ∗

2 )(x
∗) is the linearized tangent cone of X(J ∗1 ,J ∗2 ) at x∗.

Since x∗ satisfies the MPEC-RCRCQ, the RCRCQ holds at x∗ ∈ X(J ∗1 ,J ∗2 ) for each partition

(J ∗1 ,J ∗2 ) ∈ P(J ∗). Since the RCRCQ implies the RCPLD, it follows from Lemma 2.1 that

TX(J ∗
1 ,J ∗

2 )(x
∗) = LX(J ∗

1 ,J ∗
2 )(x

∗), ∀(J ∗1 ,J ∗2 ) ∈ P(J ∗).

This, together with (17), implies TX(x∗) = LMPEC(x∗).
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Theorem 3.4 If the MPEC-RCRCQ holds at x∗ ∈ X and y∗ ∈M1
C(x∗), then C̃(x∗) ⊆ TX̃(x∗).

Proof. Since the MPEC-RCRCQ holds at x∗ ∈ X, the MPEC-RCRCQ holds at x∗ ∈ X̃. It follows

from Lemma 3.1 that C̃(x∗) ⊆ TX̃(x∗).

Now we are ready to show that, under the MPEC-RCRCQ, any locally optimal solution satisfies the

S-SSONC. This result improves the result of Scheel and Scholtes [2, Theorem 7 (1)], who proved the

S-RSONC (weaker than the S-SSONC) under the MPEC SMFCQ (stronger than the MPEC-RCRCQ).

Theorem 3.5 Suppose that x∗ is a locally optimal solution of (5) and the MPEC-RCRCQ holds at x∗.

Then M1
M (x∗) 6= ∅ and, for any y∗ ∈M1

S(x∗),

dT∇2
xL

1
MPEC(x∗, y∗)d ≥ 0, ∀d ∈ CMPEC(x∗).

Proof. By Lemma 3.1, we have TX(x∗) = LMPEC(x∗) and then, by [4, Theorem 3.1], M1
M (x∗) 6= ∅.

Let y∗ ∈ M1
S(x∗). By Theorem 3.4, we have C̃(x∗) = TX̃(x∗). By virtue of Corollary 3.2, it suffices to

show that CMPEC(x∗) ⊆ C̃(x∗). In fact, for any d ∈ CMPEC(x∗), by definition of MPEC critical cone, we

have ∇f(x∗)T d ≤ 0 and d ∈ LMPEC(x∗). On the other hand, by the local optimality of x∗, we have

∇f(x∗)T d ≥ 0, ∀d ∈ TX(x∗) = LMPEC(x∗).

It follows that ∇f(x∗)T d = 0. Thus, we have from (11) that d ∈ C̃(x∗).

Theorem 3.6 Let x∗ be a locally optimal solution of the MPEC (5). If the MPEC-WRCR condition

holds at x∗, then, for any y∗ ∈M1
C(x∗), we have

dT∇2
xL

1
MPEC(x∗, y∗)d ≥ 0, ∀d ∈ Ĉ(x∗),

where

Ĉ(x∗) :=


d

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∇gi(x∗)T d = 0 if i ∈ I∗g and λ∗i > 0

∇gi(x∗)T d ≤ 0 if i ∈ I∗g and λ∗i = 0

∇hi(x∗)T d = 0 for i = 1, · · · , q

∇Gi(x∗)T d = 0 if i ∈ I∗ ∪ J ∗, ∇Hi(x
∗)T d = 0 if i ∈ K∗ ∪ J ∗


.
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Proof. Consider the set

X̂ :=


x

∣∣∣∣∣∣∣∣∣∣∣
gi(x) = 0 if i ∈ I∗g and λ∗i > 0, gi(x) ≤ 0 if i ∈ I∗g and λ∗i = 0

hi(x) = 0 for i = 1, · · · , q

Gi(x) = 0 if i ∈ I∗ ∪ J ∗, Hi(x) = 0 if i ∈ K∗ ∪ J ∗


.

Since the MPEC-WRCR condition holds at x∗, the RCRCQ holds at x∗ for X̂. Thus, we have from

Lemma 2.1 that

TX̂(x∗) = Ĉ(x∗).

Therefore, the desired result can be obtained from Theorem 3.3 and TX̂(x∗) ⊆ TX̃(x∗).

The second-order necessary condition given in Theorem 3.6 is reasonable because the cone Ĉ(x∗) is

actually the critical cone of the following tightened problem associated with (5):

min f(x)

s.t. g(x) ≤ 0, h(x) = 0,

GI∗∪J ∗(x) = 0, HK∗∪J ∗(x) = 0.

(18)

Theorem 3.7 Let x∗ be a locally optimal solution of the MPEC (5). If the MPEC-WCR condition holds

at x∗, then, for any y∗ ∈M1
C(x∗), we have

dT∇2
xL

1
MPEC(x∗, y∗)d ≥ 0, ∀d ∈ C̄MPEC(x∗).

Proof. Consider the set

X̄ :=

x
∣∣∣∣∣∣∣
gi(x) = 0, if i ∈ I∗g , hi(x) = 0 for i = 1, · · · , q

Gi(x) = 0 if i ∈ I∗ ∪ J ∗, Hi(x) = 0 if i ∈ K∗ ∪ J ∗

 .

Since the MPEC-WCR condition holds at x∗, the RCRCQ holds at x∗ for X̂. Thus, we have from Lemma

2.1 that

TX̄(x∗) = C̄MPEC(x∗).

Therefore, the desired result can be obtained from Theorem 3.3 and TX̄(x∗) ⊆ TX̃(x∗).
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Note that the cone C̄MPEC(x∗) defined in Theorem 3.7 is independent of the objective function of (5).

We close this section by illustrating that both C̃(x∗) ⊆ TX̃(x∗) and the MPEC Abadie CQ are strictly

weaker than the MPEC-RCRCQ and, moreover, the MPEC-WRCR and the MPEC-WCR imply neither

C̃(x∗) ⊆ TX̃(x∗) nor the MPEC Abadie CQ, and neither of them is a constraint qualification for the

M-stationarity.

The following example shows that C̃(x̄) ⊆ TX̃(x̄) and the MPEC Abadie CQ hold at some point x̄,

but the MPEC-RCRCQ does not hold at x̄.

Example 3.3 Consider the problem

min f(x1, x2) ≡ 1

s.t. x2 ≤ 0, −x1 + x2
2 ≤ 0,

0 ≤ x1 ⊥ x2 ≥ 0.

It is obvious that every feasible point is a globally optimal solution. Take x̄ := (0, 0). Since
{

( 1
0 ) ,
( −1

2x2

)}
has rank one when x = x̄ and rank two when x2 6= x̄2, the MPEC-RCRCQ does not hold at x̄. Denote

by X the feasible region of the problem. It is not hard to show that (0, 0; 0, 0, 0, 0) is an S-stationary pair

for the problem and X̃ = X. It is easy to verify that TX̃(x̄) = C̃(x̄) = {(d1, d2) | d1 ≥ 0, d2 = 0} and

TX(x̄) = LMPEC(x̄).

The following example shows that both the MPEC-WRCR and MPEC-WCR hold at some point x̄,

but C̃(x̄) ⊆ TX̃(x̄) and the MPEC Abadie CQ do not hold at x̄.

Example 3.4 Consider the problem

min f(x1, x2) ≡ 1

s.t. x2 − x2
1 = 0,

0 ≤ −x1 ⊥ x2 ≥ 0.

It is obvious that the only feasible point is x̄ := (0, 0). Since
{(−2x1

1

)
,
(−1

0

)
, ( 0

1 )
}

has rank two for

any x, both the MPEC-WRCR and the MPEC-WCR hold at x̄. Denote by X the feasible region of the

problem. It is not hard to see that (0, 0; 1, 0, 1) is an S-stationary pair of the problem and X̃ = X. By
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direct calculation, we can get TX̃(x̄) = {0} and C̃(x̄) = {(d1, d2) | d1 ≤ 0, d2 = 0}. Thus, C̃(x̄) * TX̃(x̄).

Moreover, TX(x̄) = {0} and LMPEC(x̄) = {(d1, d2) | d1 ≤ 0, d2 = 0}, which means that the MPEC

Abadie CQ does not holds at x̄.

The following example, which originates from [17, Example 2.2], shows that both the MPEC-WRCR

and MPEC-WCR are not constraint qualifications for M-stationarity.

Example 3.5 Consider the problem

min x1 + x2 − x3 −
1

2
x4

s.t. x2
4 = 0, (19)

−6x1 + x3 + x4 = 0, −6x2 + x3 = 0,

0 ≤ x1 ⊥ x2 ≥ 0.

It is obvious that the unique feasible point x̄ = (0, 0, 0, 0) is a global solution. Moreover, it is not hard

to see that the MPEC-WRCR and MPEC-WCR hold at x̄. By solving the M-stationarity conditions, we

can obtain that the multipliers corresponding to J ∗ is u = v = −2. Since u < 0 and v < 0, the unique

minimizer (0, 0, 0, 0) is not an M-stationary point.

4 Isolatedness of Local Minimizers

In this section, we investigate conditions under which an M- or S-stationary point of the MPEC (5) must

be an isolated local minimizer. Theorem 3.2 shows that any feasible point satisfying the S-RSOSC is

locally optimal. However, the following example, which originates from [39], shows that an S-stationary

point satisfying the S-SSOSC (stronger than the S-RSOSC) may not be an isolated local minimizer. To

ensure a stationary point to be isolated, some constraint qualification is required.

Example 4.1 Consider the problem

min
1

2
(x2 + y2)

s.t. h(x) = 0,

0 ≤ x ⊥ y ≥ 0,
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where

h(x) :=


x5 sin 1

x , x 6= 0,

0, x = 0.

The feasible region is {(0, y) | y ≥ 0}∪{( 1
kπ , 0) | k = 1, 2, · · · }. It is not difficult to verify that every point

of the set {( 1
kπ , 0) | k = 0, 1, 2, · · · } is both locally optimal and S-stationary, and the S-RSOSC holds at

(0, 0). However, (0, 0) is neither an isolated locally optimal solution nor an isolated S-stationary point.

Definition 4.1 We say that the M-multiplier strong second-order sufficient condition (M-SSOSC) holds

at x∗ ∈ X iff, for every y∗ ∈M1
M (x∗),

dT∇2
xL

1
MPEC(x∗, y∗)d > 0, ∀d ∈ CMPEC(x∗)\{0}.

Recently, the CPLD for nonlinear programs in Definition 2.3 was extended to MPEC in [45] and [7],

respectively. Note that the constraint qualification in the sense of [7] is weaker than the one in the sense

of [45].

Definition 4.2 [7] We say that the MPEC constant positive linear dependent condition (MPEC-CPLD)

holds at x∗ ∈ X iff, for any I1 ⊆ I∗g , I2 ⊆ {1, · · · , q}, I3 ⊆ I∗ ∪ J ∗ and I4 ⊆ K∗ ∪ J ∗, whenever there

exist multipliers, not all zero, {λ, µ, u, v} with λi ≥ 0 for each i ∈ I1, either ulvl = 0 or ul > 0, vl > 0 for

each l ∈ J ∗, such that

∑
i∈I1

λi∇gi(x∗) +
∑
j∈I2

µj∇hj(x∗)−
∑
l∈I3

ul∇Gl(x∗)−
∑
l∈I4

vl∇Hl(x
∗) = 0,

there exists a neighborhood B(x∗) of x∗ such that, for any x ∈ B(x∗), the vectors

{∇hi(x)| i ∈ I1}, {∇gj(x)| j ∈ I2}, {∇Gl(x)| l ∈ I3}, {∇Hl(x)| l ∈ I4}

are linearly dependent.

The MPEC-CPLD is obviously weaker than the MPEC NNAMCQ and MPEC-CRCQ. Motivated

by the RCPLD in [33], we define an MPEC-type RCPLD, which is weaker than the MPEC-CPLD and
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MPEC-RCRCQ. Given a point x and three index sets I1 ⊆ {1, · · · , q} and I2, I3 ⊆ {1, · · · ,m}, we denote

G(x; I1, I2, I3) := {∇hj(x),∇Gı(x),∇H(x) | j ∈ I1, ı ∈ I2,  ∈ I3}.

Definition 4.3 Let I1 ⊆ {1, · · · , q}, I2 ⊆ I∗, and I3 ⊆ K∗ be such that G(x∗; I1, I2, I3) is a basis for the

generated space spanG(x∗; {1, · · · , q}, I∗,K∗). We say that the MPEC-relaxed constant positive linear

dependence (MPEC-RCPLD) holds at x∗ iff there exists δ > 0 such that

– G(x; {1, · · · , q}, I∗,K∗) has the same rank for each x ∈ Bδ(x∗);

– for each I4 ⊆ I∗g and I5, I6 ⊆ J ∗, whenever there exist multipliers, not all zero, {λ, µ, u, v} with

λi ≥ 0 for each i ∈ I4, either ulvl = 0 or ul > 0, vl > 0 for each l ∈ J ∗, such that

∑
i∈I4

λi∇gi(x∗) +
∑
j∈I1

µj∇hj(x∗)−
∑

ı∈I2∪I5

uı∇Gı(x∗)−
∑

∈I3∪I6

v∇H(x
∗) = 0,

then, for any x ∈ Bδ(x∗), the vectors

{∇gi(x)| i ∈ I4}, {∇hj(x)| j ∈ I1}, {∇Gı(x)| ı ∈ I2 ∪ I5}, {∇H(x)|  ∈ I3 ∪ I6}

are linearly dependent.

The MPEC-RCPLD has been shown to be a constraint qualification for M-stationarity in [47]. In

the case where there is no complementarity constraint, the MPEC-RCPLD reduces to the relaxed

constant positive linear dependence (RCPLD) condition introduced recently in [33] for standard

nonlinear programs.

The following result can be seen as a corollary of Carathéodory’s lemma [48].

Lemma 4.1 [33] If x =
∑m+p
i=1 αivi with {vi | i = 1, · · · ,m} to be linearly independent and αi 6= 0 for

i = m + 1, · · · ,m + p, then there exist J ⊆ {m + 1, · · · ,m + p} and ᾱi for i ∈ {1, · · · ,m} ∪ J such

that x =
∑
i∈{1,··· ,m}∪J ᾱivi with αiᾱi > 0 for every i ∈ J and {vi |ı ∈ {1, · · · ,m} ∪ J } is linearly

independent.

Theorem 4.1 Let x∗ be an M-stationary point of the MPEC (5). Suppose that both the MPEC-RCPLD

and M-SSOSC hold at x∗. Then there exists a constant δ > 0 such that, if x ∈ Bδ(x∗) ∩ X and (x, y)
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satisfies (10) for some y, there must hold x = x∗.

Proof. Suppose to the contrary that there exist a sequence {xk} ⊆ X\{x∗} converging to x∗ and an

associated multiplier sequence {yk} satisfying


0 = ∇f(xk) +∇F (xk)yk,

yk ∈ NΛ(F (xk)).

(20)

We first show that there exists a bounded subsequence {ȳk}k∈K satisfying (20). Assume that

∇f(xk) 6= 0 for each k (otherwise, we can choose a subsequence and redefine yk = 0 for each k ∈ K,

which is obviously bounded and satisfies (20)). For sake of convenience, denote



Ikg := { i | gi(xk) = 0},

Ik := { i | Gi(xk) = 0 < Hi(x
k)},

J k := { i | Gi(xk) = 0 = Hi(x
k)},

Kk := { i | Gi(xk) > 0 = Hi(x
k)}.

Since I∗ ⊆ Ik and K∗ ⊆ Kk for each k sufficiently large, it follows from the first equality in (20) that

0 = ∇f(xk) +

q∑
i=1

µki∇hi(xk)−
∑
ı∈I∗

ukı∇Gı(xk)−
∑
∈K∗

vk∇H(x
k)−

∑
ı∈Ik\I∗∪J k∩supp(uk)

ukı∇Gı(xk)−
∑

∈Kk\K∗∪J k∩supp(vk)

vk∇H(x
k) +

∑
j∈supp(λk)

λkj∇gj(xk),

(21)

where supp(a) := {i | ai 6= 0}. Let I1 ⊆ {1, · · · , q}, I2 ⊆ I∗, and I3 ⊆ K∗ be such that G(x∗; I1, I2, I3) is

a basis for spanG(x∗; {1, · · · , q}, I∗,K∗). Then G(xk; I1, I2, I3) is linearly independent for k sufficiently

large. Since there is a constant δ > 0 such that the rank of G(x; {1, · · · , q}, I∗,K∗) is constant for each

x ∈ Bδ(x∗), we have that G(xk; I1, I2, I3) is a basis for

spanG(xk; {1, · · · , q}, I∗,K∗)
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for k sufficiently large. Thus, it follows from (21) and Lemma 4.1 that there exist Ik4 ⊆ supp(λk),

Ik5 ⊆ Ik \ I∗ ∪ J k ∩ supp(uk), Ik6 ⊆ Kk \ K∗ ∪ J k ∩ supp(vk), and µ̄k, λ̄k, ūk, and v̄k such that

0 = ∇f(xk) +
∑
i∈I1

µ̄ki∇hi(xk)−
∑
ı∈I2

ūkı∇Gı(xk)−
∑
∈I3

v̄k∇H(x
k)

+
∑
j∈Ik4

λ̄kj∇gj(xk)−
∑
ı∈Ik5

ūkı∇Gı(xk)−
∑
∈Ik6

v̄k∇Hı(x
k),

and

{∇gj(xk) | j ∈ Ik4 }, {∇hi(xk) | i ∈ I1}, {∇Gı(xk) | ı ∈ I2 ∪ Ik5 }, {∇H(x
k) |  ∈ I3 ∪ Ik6 }

are linearly independent for k sufficiently large. Set λ̄ki = 0 for i /∈ Ik4 , µ̄ki = 0 for i /∈ I1, and ūkı = 0

for ı /∈ I2 ∪ Ik5 , v̄k = 0 for  /∈ I3 ∪ Ik6 . It is not hard from the above process and Lemma 4.1 that

(λ̄k, µ̄k, ūk, v̄k) ∈ M1
M (xk). Without any loss of generality, we assume that Ik4 ≡ I4, Ik5 ≡ I5, and

Ik6 ≡ I6. Then

{∇gj(xk) | j ∈ I4}, {∇hi(xk) | i ∈ I1}, {∇Gı(xk) | ı ∈ I2 ∪ I5}, {∇H(x
k) |  ∈ I3 ∪ I6} (22)

are linearly independent. It is not hard to get that I4 ⊆ I∗g , I1 ⊆ {1, · · · , q}, and I5, I6 ∈ J ∗ by

Ik ∪ J k ∪ Kk = I∗ ∪ J ∗ ∪ K∗. Assume that ȳk = (λ̄k, µ̄k, ūk, v̄k) is unbounded and, without any loss of

generality, ȳk/‖ȳk‖ → ȳ∗ with ‖ȳ∗‖ = 1. Since ȳk = (λ̄k, µ̄k, ūk, v̄k) ∈M1
M (x∗), we have

 0 = ∇f(xk) +∇F (xk)ȳk,

ȳk ∈ NΛ(F (xk)).

Thus, we have from the outer semicontinuity of NΛ (see, e.g., [44, Proposition 6.6]) that

0 = lim
k→∞

(∇xf(xk)

‖ȳk‖
+
∇xF (xk)ȳk

‖ȳk‖

)
= ∇xF (x∗)ȳ∗,

ȳ∗ = lim
k→∞

ȳk

‖ȳk‖
∈ lim sup

k→∞
NΛ(F (xk)) = NΛ(F (x∗)).

Thus, we have 0 6= ȳ∗ = (λ̄∗, µ̄∗, ū∗, v̄∗) ∈M1
M (x∗) and

∑
i∈I4

λ̄∗i∇gi(x∗) +
∑
j∈I1

µ̄∗j∇hj(x∗)−
∑

ı∈I2∪I5

ū∗ı∇Gı(x∗)−
∑

∈I3∪I6

v̄∗∇H(x
∗) = 0.
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Clearly, λ̄∗i ≥ 0 for i ∈ I4 and either ū∗l v̄
∗
l = 0 or ū∗l > 0, v̄∗l > 0 for l ∈ J ∗ . This, together with

(22), contradicts the MPEC-RCPLD assumption at x∗. Thus, {ȳk}k∈K is bounded. Without any loss

of generality, we may assume that {yk} is a bounded sequence satisfying (20). We may further assume

that yk → y∗. Clearly, from the outer semicontinuity of NΛ, y∗ ∈ NΛ(F (x∗)) and hence y∗ ∈ M1
M (x∗).

Assume further that (xk − x∗)/‖xk − x∗‖ → d0 with ‖d0‖ = 1. Note that, for each k,

Λ 3 F (xk) = F (x∗) +∇F (x∗)T (xk − x∗) + o(‖xk − x∗‖),

and hence

∇F (x∗)T d0 = lim
k→∞

F (xk)− F (x∗)

‖xk − x∗‖
∈ TΛ(F (x∗)). (23)

It follows from (20) and [44, Proposition 6.41] that

yk ∈
l∏
i=1

N(−∞,0](gi(x
k))×

q∏
i=1

N{0}(hi(xk))×
m∏
i=1

NC(−Gi(xk),−Hi(x
k)). (24)

It follows from (24) and Proposition 3.1 that, for each j

ykj Fj(x
k) = 0. (25)

We next show that (yk)TF (x∗) = (y∗)TF (xk) = 0 for each k sufficiently large. In fact, if Fj(x
∗) 6= 0

for some j, then Fj(x
k) 6= 0 when k is sufficiently large and hence, by (25), ykj = 0. As a result, we

always have (yk)TF (x∗) = 0. We can show (y∗)TF (xk) = 0 when k is sufficiently large in a similar way.

Therefore, we have that, for each k sufficiently large,

(yk)TF (x∗) = (y∗)TF (xk) = (yk)TF (xk) = 0. (26)
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Noting that {yk} is bounded, we have that, for each k sufficiently large,

0 = (yk)TF (xk)

= (yk)TF (x∗) + (yk)T∇F (x∗)T (xk − x∗) + o(‖xk − x∗‖)

= (yk)T∇F (x∗)T (xk − x∗) + o(‖xk − x∗‖).

Dividing it by ‖xk − x∗‖ and taking a limit, we obtain

(y∗)T∇F (x∗)T d0 = 0.

It follows from (20) that

0 = ∇f(xk)T (xk − x∗) + (yk)T∇F (xk)T (xk − x∗). (27)

Dividing it by ‖xk − x∗‖ and taking a limit, we have ∇f(x∗)T d0 = 0. This, together with (23), indicates

d0 ∈ CMPEC(x∗) and then, by the M-SSOSC assumption,

(d0)T∇2
xL

1
MPEC(x∗, y∗)d0 > 0. (28)

Let k be large enough. Consider the smooth function sk defined by

sk(t) := (∇f(xt) +∇F (xt)yt)
T (xk − x∗)− F (xt)

T (yk − y∗),

where (xt, yt) := (1− t)(x∗, y∗) + t(xk, yk). It is not difficult to see from (10) and (20) that the first term

vanishes when t = 0 or t = 1. On the other hand,

• if t = 0, it follows from (26) and y∗ ∈ NΛ(F (x∗)) that

F (xt)
T (yk − y∗) = F (x∗)T (yk − y∗) = 0;
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• if t = 1, it follows from (26) that

F (xt)
T (yk − y∗) = F (xk)T yk − F (xk)T y∗ = 0.

As a result, we have sk(0) = 0 = sk(1). By the mean value theorem, there exists tk ∈ (0, 1) such that

0 = s′k(tk) = (xk − x∗)T∇2
xL

1
MPEC(xtk , ytk)(xk − x∗).

Dividing it by ‖xk−x∗‖2 and taking a limit, we obtain a contradiction to (28). This completes the proof.

We can get the following isolatedness result of S-stationary point immediately. Due to the fact that

a limit point of S-stationary points may not be S-stationary, we do not know whether the M-SSOSC can

be weakened to the S-SSOSC.

Corollary 4.1 Let x∗ be an S-stationary point of the MPEC (5). Suppose that both the MPEC-RCPLD

and M-SSOSC hold at x∗. Then there exists a neighborhood V of x∗ containing no other S-stationary

point.

Theorem 4.2 If the MPEC-CPLD holds at x∗ ∈ X, there exists δ > 0 such that, for each x ∈ Bδ(x∗)∩X,

the MPEC-CPLD holds at x.

Proof. Assume to the contrary that there exists a sequence {xk} →X x∗ such that the MPEC-CPLD

does not hold at xk for each k. That is, for each k, there exist index sets Ik1 ⊆ Ikg , Ik2 ⊆ {1, · · · , q},

Ik3 ⊆ Ik∪J k, and Ik4 ⊆ Kk∪J k, where {Ikg , Ik,J k,Kk} are the same as in the proof of Theorem 20, and

multipliers, not all zero, {λk, µk, uk, vk} with λki ≥ 0 for each i ∈ Ik1 , either ukl v
k
l = 0 or ukl > 0, vkl > 0

for each l ∈ J k such that

∑
i∈Ik1

λki∇gi(xk) +
∑
j∈Ik2

µkj∇hj(xk)−
∑
l∈Ik3

ukl∇Gl(xk)−
∑
l∈Ik4

vkl ∇Hl(x
k) = 0, (29)

and there exists sequence {yk,ν} converging to xk as ν →∞ such that

{
∇gi(yk,ν),∇hj(yk,ν),∇Gl(yk,ν),∇H(y

k,ν)
∣∣ i ∈ Ik1 , j ∈ Ik2 , l ∈ Ik3 ,  ∈ Ik4} (30)
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is linearly independent. Without any loss of generality, we may assume that Ik1 ≡ I1, Ik2 ≡ I2, Ik3 ≡ I3,

and Ik4 ≡ I4. It is not difficult to get that I1 ⊆ I∗g , I2 ⊆ {1, · · · , q}, I3 ⊆ I∗ ∪ J ∗, and I4 ⊆ K∗ ∪ J ∗.

Set λki = 0 for i /∈ I1, uki = 0 for i /∈ I3, and vki = 0 for i /∈ I4. We may further assume that

(λk, µk, uk, vk)/‖(λk, µk, uk, vk)‖ → (λ∗, µ∗, u∗, v∗) with (λ∗, µ∗, u∗, v∗) = 1. Dividing (29) by

‖(λk, µk, uk, vk)‖ and taking a limit in (29), we have

∑
i∈I1

λ∗i∇gi(x∗) +
∑
j∈I2

µ∗j∇hj(x∗)−
∑
l∈I3

u∗l∇Gl(x∗)−
∑
l∈I4

v∗l∇Hl(x
∗) = 0. (31)

It is not hard to get from (29) and Proposition 3.1 that

yk = (λk, µk, uk, vk)/‖(λk, µk, uk, vk)‖ ∈ NΛ(F (xk)).

Therefore, we have from the outer semicontinuity of NΛ that y∗ ∈ NΛ(F (x∗)). Thus, we have from

Proposition 3.1 that

either u∗l v
∗
l = 0 or u∗l > 0, v∗l > 0 for each l ∈ J ∗. (32)

By the diagonalization law, we have from (30) that there exists {zk} → x∗ such that

{
∇gi(zk),∇hj(zk),∇Gl(zk),∇H(z

k)
∣∣ i ∈ I1, j ∈ I2, l ∈ I3,  ∈ I4

}

is linearly independent, which together with (31)–(32) gives a contradiction with the assumption that the

MPEC-CPLD holds at x∗. This completes the proof.

Corollary 4.2 Let x∗ be an M-stationary point of the MPEC (5). Suppose that both MPEC-CPLD and

M-SSOSC hold at x∗. Then there exists a neighborhood V of x∗ such that x∗ is the only possibly local

minimizer of the MPEC (5) in V ∩X. If, in addition, x∗ is an S-stationary point of (5), then x∗ is the

only local minimizer of the MPEC (5)in V ∩X.

Proof. Let V1 be the open neighborhood in Theorem 4.1 such that there is no other M-stationary point

in V1 ∩X and V2 be the open neighborhood in Theorem 4.2 such that the MPEC-CPLD holds at each

element in V2 ∩ X. Set V := V1 ∩ V2. Since any locally optimal solution satisfying the MPEC-CPLD

36



must be M-stationary [7], the set V is the required one. The rest of the theorem follows from Theorem

3.2.

We further have the following result from Theorem 3.2 and Corollary 4.2. Note that the M-SSOSC

for the MPEC (5) with linear constraints is independent of M-multipliers.

Corollary 4.3 Suppose that F is affine and x∗ is an S-stationary point of (5). Let the M-SSOSC hold

at x∗. Then there exists a neighborhood V of x∗ containing no other local minimizer of (5).

Finally, we summarize the relationships among the constraint qualifications involved in this paper and

[2,8,47] in Figure 1. Especially, the MPEC pseudonormality and MPEC quasinormality were introduced

in [8], in which the relations “the MPEC pseudonormality ⇒ local error bound and the MPEC Abadie

constraint qualification” and “the MPEC quasinormality ⇒ the M-stationarity” were shown. Moreover,

Guo and Lin [47] showed that the MPEC RCPLD⇒ the M-stationarity. In addition, the MPEC SMFCQ

and MPEC MFCQ, which are stronger than the MPEC NNAMCQ, were introduced in [2], and it was

showed that local minimizers of the MPEC (5) are S-stationary and the C-stationary, respectively.
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?
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Figure 1: Relations among various CQs
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5 Conclusions

We have improved various second-order optimality conditions for standard nonlinear programs by using

some newly discovered constraint qualifications. We have also presented some new constraint

qualifications for MPEC and, based on these new constraint qualifications, we obtained several

second-order sufficient and necessary optimality conditions for MPEC. In addition, we have shown the

isolatedness of M-/S-stationary points and local minimizers of MPEC under very weak conditions.
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