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Abstract. In this paper, we study a semi-infinite programming (SIP) problem with a

convex set constraint. Using the value function of the lower level problem, we reformulate

SIP problem as a nonsmooth optimization problem. Using the theory of nonsmooth La-

grange multiplier rules and Danskin’s theorem, we present constraint qualifications and

necessary optimality conditions. We propose a new numerical method for solving the

problem. The novelty of our numerical method is to use the integral entropy function to

approximate the value function and then solve SIP by the smoothing projected gradient

method. Moreover we study the relationships between the approximating problems and

the original SIP problem. We derive error bounds between the integral entropy function

and the value function, and between locally optimal solutions of the smoothing problem

and those for the original problem. Using certain second order sufficient conditions, we de-

rive some estimates for locally optimal solutions of problem (VP). Numerical experiments

show that the algorithm is efficient for solving SIP.
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1 Introduction.

The semi-infinite programming problem is an optimization problem with finite dimen-

sional decision variable x ∈ Rn and infinite number of constraints. In this paper we

consider the following (standard) nonlinear semi-infinite programming (SIP) problem:

(SIP) min
x

f(x)

s.t. g(x, y) ≤ 0, ∀y ∈ Y,

x ∈ X,

where f : Rn → R, g : Rn × Rm → R, X is a subset of Rn and Y is a nonempty

compact subsets of Rm. Unless otherwise specified, in this paper we assume that f, g

are continuously differentiable and X is a closed and convex set. In a more general

case where Y is not fixed but x-dependent, the problem is called the generalized semi-

infinite programming problem (see, e.g., [44]). In applications, additional semi-infinite

constraints may be present. Whereas the techniques and results presented in this paper

can be extended to tackle these more general problems (as in Examples 4.1 and 4.2),

for the sake of simplicity we develop the main ideas only for SIP with one semi-infinite

constraint.

Standard SIP problems have numerous applications and have been studied systemati-

cally since the 1960s. We refer to [16] for introduction to SIP problem, [31] for numerical

methods of SIP, [12] for linear SIP and [27] for algorithmic aspects. We also refer to

[15, 28] for excellent reviews with hundreds of references on SIP. The monograph [35]

contains a detailed study of generalized SIP and the papers [13, 25, 36] survey the most

recent development on the subject.

The difficulty of solving a SIP problem lies in that there are infinite many constraints.

The earliest and the most common approach to solve SIP involving using the method of

solving finite mathematical programming problems in one way or the other. The most

common approach for solving SIP problems is the discretization method by which one

chooses a finite grid of Y , solves a finite mathematical programs with Y replaced by the

finite grid and updates the grid (see e.g. [27, 38, 40]). The discretization method is

easy to implement but it is computationally costly and the cost per iteration increases

dramatically as the cardinality of the finite grid of Y grows. Another approach, the

reduction-based method, is to reduce the problem locally to a finite-dimensional nonlinear

programming problem (see e.g. [2, 3, 15, 18, 39]). The reduction-based method, however,

usually requires very strong assumptions including the conditions leading to the finiteness

of the set of active constraints. Beyond discretization and reduction-based methods, one

of the most important method is the so-called exchange method [1, 9, 14, 17, 20, 21, 25,
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27, 32, 41, 42]. Zhang et.al [45] also propose a new exchange method for convex SIP

problem which introduced a new dropping rule that only keeps those active constraints

with positive Lagrange multipliers. Moreover, the algorithm does not require to solve a

maximization problem over the index set at each iteration, it only needs to find some

points such that a certain computation–easy criterion is satisfied. The Kurash-Kuch-

Tucker (KKT) system of SIP can be reformulated to a system of semi-smooth equations.

The authors [23, 26, 29, 30, 43] then apply the smoothing, semi-smooth Newton method,

or Newton-type method to solve the KKT system. However, the methods presented in

[23, 30] do not ensure the feasibility of the original SIP problem, the method of [43]

does not have locally superlinear convergence property, and accumulation points of the

sequences generated in [26, 29] are not necessarily stationary points of the SIP problem.

Recently, [22] proposed a new smoothing Newton-type method for solving the SIP problem

which have overcome these drawbacks.

More recent approach for dealing with SIP involves the following equivalent formula-

tion.

(VP) min
x∈X

f(x)

s.t. V (x) ≤ 0,

where V (x) := max
y∈Y

g(x, y) is the value function of the lower level problem. For the

case where the lower level problem is concave (i.e., the lower level objective function

g(x, y) is concave in y and Y is a convex set), the Karush-Kuhn-Tucker (KKT) condition

for the lower level problem is also sufficient for optimality. In this case, SIP can be

reformulated and solved as a mathematical program with complementarity constraints

(MPCC) [35, 37]. For the general case where the lower level problem may not be concave,

Floudas and Stein [11] developed an adaptive convexification algorithm for solving SIP.

Their idea is to adaptively construct concave relaxations of the lower level problem by

using the αBB method ([10]), replace the relaxed lower level problems equivalently by the

KKT conditions, and solve the resulting MPCCs. This approximation produces feasible

iterates for the original SIP. Recently Shiu and Wu [34] combine the idea of the relaxed

cutting plane method with convexification to solve SIP.

In this paper, we introduce a new method for SIP by solving the equivalent formulation

(VP). Our method is based on the smoothing projected gradient algorithm that we re-

cently introduced to solve a simple bilevel program in [24]. Problem (VP) is a nonsmooth

problem since the value function V (x) is generally nonsmooth even when the function

g(x, y) is smooth. By Danskin’s theorem (see Proposition 2.1 below), the value function

is Lipschitz continuous and its Clarke generalized gradients can be computed. By using

the nonsmooth KKT conditions, we can then define stationary conditions for problem
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(VP) under suitable constraint qualifications. To design a numerical algorithm, we use

the following smooth approximation of the value function V (x) introduced in [24]:

γρ(x) := ρ−1 ln

(∫
Y

exp[ρg(x, y)]dy

)
where ρ > 0. We then use this smoothing function to replace the value function, solve a

smoothing penalty problem, update the smoothing parameter ρ and the penalty param-

eter. Under suitable conditions, the iteration sequence converges to a stationary point of

(VP). To give a quantitative measure on how good the approximation of the smoothing

function is, we study the error bounds between the integral entropy function and the value

function. We derive some relationships among the stationary points, the locally optimal

solutions for the smoothing problems and the original problems. What is more, we derive

some estimates for locally optimal solutions of problem (VP) under some second order

sufficient conditions.

The rest of the paper is organized as follows. In Section 2, we study the optimal-

ity conditions and introduce some constraint qualifications. In Section 3, we study the

smoothing projected gradient method and derive some properties of the integral entropy

function including the error bounds between the integral entropy function and the value

function. Moreover we give some error bounds between locally optimal solutions and

current iterate of the algorithm. In this section we also give estimates for locally optimal

solutions of the SIP problem under certain second order sufficient conditions. In Section

4, we report some results for our numerical experiments.

We adopt the following standard notation in this paper. For any two vectors a and b

in Rn, we denote by aT b their inner product. Given a function G : Rn → Rm, we denote

its Jacobian by ∇G(z) ∈ Rm×n and, if m = 1, the gradient ∇G(z) ∈ Rn is considered

as a column vector. For a set Ω ⊆ Rn, we denote by int Ω and co Ω the interior and

the convex hull respectively. Let N(x) be a neighbourhood of point x. In addition, we

denote by N the set of nonnegative integers, exp(z) the exponential function and | · | the

Lebesgue measure of a set.

2 Optimality conditions

The optimality conditions for SIP when X = Rn have been studied since the 1960s. A

complete survey on the optimality conditions for linear, convex and smooth SIP problems

can be found in [16, 25, 33]. In this section, we develop the constraint qualifications and

necessary optimality conditions for (SIP) with X not necessarily equal to the whole space

Rn.
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We first recall some background materials on nonsmooth analysis. For a convex set

C ⊆ Rm and a point z ∈ C, the normal cone of C at z is given by

NC(z) := {ζ ∈ Rm : ζT (z′ − z) ≤ 0, ∀z′ ∈ C}

and the tangent cone of C at z is given by

TC(z) := {d ∈ Rm : (zν − z)/τν → d for some zν ∈ C, zν→z, τν ↘ 0},

respectively.

Let ϕ : Rn → R be Lipschitz continuous near x̄. The Clarke generalized directional

derivative of ϕ at x̄ in direction d is defined by

ϕ◦(x̄; d) := lim sup
x→x̄, t↘0

ϕ(x+ td)− ϕ(x)

t
.

The Clarke generalized gradient of ϕ at x̄ is a convex and compact subset of Rn, which is

defined by

∂ϕ(x̄) := {ξ ∈ Rn : ξTd ≤ ϕ◦(x̄; d), ∀d ∈ Rn}.

Note that, when ϕ is convex, the Clarke generalized gradient coincides with the subgra-

dient in the sense of convex analysis, i.e.,

∂ϕ(x̄) = {ξ ∈ Rn : ξT (x− x̄) ≤ ϕ(x)− ϕ(x̄), ∀x ∈ Rn}

and, when ϕ is continuously differentiable at x̄, we have ∂ϕ(x̄) = {∇ϕ(x̄)}.
The following theorem plays a key role in the development of optimality conditions.

Proposition 2.1 (Danskin’s Theorem) ([6, Page 99] or [8]) Let Y ⊆ Rm be a compact

set and g(x, y) be a function defined on Rn × Rm that is continuously differentiable at x̄.

Then the value function

V (x) := max{g(x, y) : y ∈ Y }

is Lipschitz continuous near x̄ and the Clarke generalized gradient of V at x̄ is

∂V (x̄) = co{∇xg(x̄, y) : y ∈ S(x̄)}, (2.1)

where S(x̄) denotes the set of all maximizers of g(x̄, y) over y ∈ Y .

By the Carathéodory’s Theorem, a closed convex set in Rn can be represented as a convex

combination of not more than n+ 1 points. Hence we have

∂V (x̄) =

{
n+1∑
k=1

λk∇xg(x̄, ȳk) : λk ≥ 0,
n+1∑
k=1

λk = 1, ȳk ∈ S(x̄)

}
. (2.2)
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By Danskin’s theorem, the value function V (x) is Lipschitz continuous at each point

x and the Clarke generalized gradient can be calculated as in (2.2). This fact allows us to

apply the nonsmooth KKT condition of Clarke [5, Proposition 6.4.4] to problem (VP) and

obtain the nonsmooth KKT condition for (VP) under the calmness condition as defined

below.

Definition 2.1 (Calmness) [5, Definition 6.4.1] Let x̄ be a locally optimal solution of

(VP). We say that (VP) is calm at x̄ if x̄ is also a locally optimal solution of the exact

penalty problem

min f(x) + λmax{V (x), 0}

s.t. x ∈ X

for some λ > 0.

Theorem 2.1 Let x̄ ∈ X be a local minimizer of (SIP). Suppose that (VP) is calm at

x̄. Then there exists µ ≥ 0 such that

0 ∈ ∇f(x̄) + µ∂V (x̄) +NX(x̄), (2.3)

µV (x̄) = 0. (2.4)

The necessary conditions in Theorem 2.1 involve the value function V (x). However,

using the formula (2.2), we can derive the conditions in terms of the original problem data

of (SIP). Let x̄ be a feasible solution of (SIP). Denote the active set of problem (SIP) at x̄

by Yact(x̄) = {y ∈ Y : g(x̄, y) = 0}. Note that when V (x̄) = 0, Yact(x̄) = S(x̄), otherwise

if V (x̄) < 0, then Yact(x̄) = ∅.

Theorem 2.2 Let x̄ ∈ X be a local minimizer of (SIP). Suppose that (VP) is calm at

x̄. Then either Yact(x̄) = ∅ and 0 ∈ ∇f(x̄) + NX(x̄) or there exists ȳk ∈ Yact(x̄), for

1 ≤ k ≤ n+ 1 and λk ≥ 0 for 1 ≤ k ≤ n+ 1 such that

0 ∈ ∇f(x̄) +
n+1∑
k=1

λk∇xg(x̄, ȳk) +NX(x̄), (2.5)

λkg(x̄, ȳk) = 0, 1 ≤ k ≤ n+ 1. (2.6)

Proof. By Theorem 2.1, (2.3) and (2.4) hold for some µ ≥ 0. Since Yact(x̄) = ∅ if and

only if V (x̄) < 0. When Yact(x̄) = ∅, (2.4) implies that µ = 0. Hence 0 ∈ ∇f(x̄) +NX(x̄)

in this case. When V (x̄) = 0, Yact(x̄) = S(x̄). (2.5) and (2.6) follow from formula (2.2).

The calmness condition may seem to be hard to verify. In fact this is not necessarily

true since certain constraint qualifications lead to the calmness condition. Here we list

two of them.
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Definition 2.2 (EMFCQ) A feasible point x̄ is said to satisfy the extended Mangasarian-

Fromovitz constraint qualification (EMFCQ) for problem (SIP) if there exists a direction

d ∈ int TX(x̄) such that

∇xg(x̄, y)Td < 0, for all y ∈ Yact(x̄).

Definition 2.3 (NNAMCQ) Let x̄ be a feasible point of problem (SIP). We say that the

no nonzero abnormal multiplier constraint qualification (NNAMCQ) holds at x̄ if either

V (x̄) < 0 or V (x̄) = 0 but

0 6∈ ∂V (x̄) +NX(x̄); (2.7)

equivalently if either g(x̄, y) < 0 for all y ∈ Y or Yact(x̄) 6= ∅ and there exists (λ1, · · · , λn+1) ∈
Rn+1, λk ≥ 0 for 1 ≤ k ≤ n+ 1 not all zero and ȳk ∈ Yact(x̄) such that

0 6∈
n+1∑
k=1

λk∇xg(x̄, ȳk) +NX(x̄).

Proposition 2.2 Let x̄ be a feasible point to (SIP). Then the following implication always

holds

EMFCQ =⇒ NNAMCQ,

and the reverse implication holds provided by int TX(x̄) 6= ∅. If x̄ is a locally optimal

solution to (SIP) and NNAMCQ holds at x̄ then (VP) is calm at x̄.

Proof. Since when V (x̄) = 0, Yact(x̄) = S(x̄), otherwise if V (x̄) < 0 then Yact(x̄) = ∅.
Thus by formula (2.2), it is easy to see that EMFCQ is equivalent to saying that either

V (x̄) < 0 or V (x̄) = 0 but there exists a direction d ∈ int TX(x̄) such that

vTd < 0, for all v ∈ ∂V (x̄)

which is the nonsmooth MFCQ for problem (VP). Consequently the proof of the first

assertion follows from [19]. The second assertion follows from [5, Corollary 5 to Theorem

6.5.2].

Based on Theorems 2.1 and 2.2, we define the stationary point for (SIP). Note that

(VP) and (SIP) are exactly equivalent and the KKT conditions by Theorems 2.1 and 2.2

are also equivalent due to the formula (2.2).

Definition 2.4 (Stationary point) We call a feasible point x̄ a stationary point of

problem (VP) if there exists µ ≥ 0 such that (2.3) and (2.4) hold. Equivalently we call

a feasible point x̄ a stationary point of problem (SIP) if either Yact(x̄) = ∅ and 0 ∈
∇f(x̄) +NX(x̄) or there exist ȳk ∈ Yact(x̄), for 1 ≤ k ≤ n+ 1 and (λ1, · · · , λn+1) ∈ Rn+1,

λk ≥ 0 for 1 ≤ k ≤ n+ 1 such that (2.5) and (2.6) hold.
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The following corollary follows by Proposition 2.2 and Theorems 2.1 and 2.2.

Corollary 2.1 Let x̄ ∈ X be a local minimizer of (SIP). Suppose that either NNAMCQ

or EMFCQ holds at x̄. Then x̄ is a stationary point of (SIP).

In order to accommodate infeasible accumulation points in the numerical algorithm,

we now extend EMFCQ and NNAMCQ to allow infeasible points.

Definition 2.5 (Extended EMFCQ) A point x̄ ∈ X is said to satisfy the extended

Mangasarian Fromovitz constraint qualification (Extended EMFCQ) for problem (SIP) if

either g(x̄, y) < 0 for all y ∈ Y or there exists a direction d ∈ int TX(x̄) such that

∇xg(x̄, y)Td < 0, for all y ∈ S(x̄).

Definition 2.6 (ENNAMCQ) Let x̄ ∈ X. We say that the extended no nonzero ab-

normal multiplier constraint qualification (ENNAMCQ) holds at x̄ for problem (VP) if

either V (x̄) < 0 or V (x̄) ≥ 0 but

0 6∈ ∂V (x̄) +NX(x̄).

Note that the extended EMFCQ and the extended NNAMCQ reduce to the EMFCQ and

NNAMCQ respectively if x is a feasible point of problem (SIP).

3 Smoothing projected gradient algorithm

In this section, we use the smoothing projected gradient algorithm proposed in [24] to

solve (SIP). We study the relationships between the smoothing problem and the original

problem. Moreover we introduce some second order conditions under which the object

value of the current iteration is very close to the locally optimal solution of the problem.

Definition 3.1 Assume that, for a given ρ > 0, gρ : Rn → R is a continuously differ-

entiable function. We say that {gρ : ρ > 0} is a family of smoothing functions of g0 if

lim
z→x, ρ↑∞

gρ(z) = g0(x) for any fixed x ∈ Rn.

Definition 3.2 [4] We say that a family of smoothing functions {gρ : ρ > 0} satisfies

the gradient consistency property if for any x ∈ Rn, lim sup
z→x, ρ↑∞

∇gρ(z) is nonempty and

lim sup
z→x, ρ↑∞

∇gρ(z) ⊆ ∂g0(x), where

lim sup
z→x, ρ↑∞

∇gρ(z) :=
{

lim
k→∞
∇gρk(zk) : zk → x, ρk ↑ ∞

}
is the set of all limit points.
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For a given positive integer ρ, we define the integral entropy function as

γρ(x) := ρ−1 ln

(∫
Y

exp[ρg(x, y)]dy

)
= V (x) + ρ−1 ln

(∫
Y

exp[ρ(g(x, y)− V (x))]dy

)
.

In [24], the value function is defined to be the minimum value instead of the maximum

value of the lower level objective function subject to y ∈ Y . If we set f(x, y) := −g(x, y) in

[24], we have −V (x) = min
y∈Y
−g(x, y). Since ∂(−V (x)) = −∂V (x), we obtain the following

results by applying [24, Theorem 5.1 and 5.5].

Lemma 3.1 {γρ(x) : ρ > 0} is a family of smoothing function of the value function V (x)

which satisfies the gradient consistency property.

The next proposition discusses the monotonicity of the entropy function γρ.

Proposition 3.1 For any given x ∈ X, if |S(x)| ≥ 1, then the integral entropy function

γρ(x) is a nonincreasing function of ρ while if |S(x)| < 1, γρ(x) is a nondecreasing function

of ρ when ρ is sufficiently large.

Proof. From the definition of V (x), we have g(x, y)− V (x) < 0 for any y ∈ Y \ S(x). It

follows from the monotonicity of the exponential function that, for any positive numbers

ρ1 > ρ2,∫
Y \S(x)

exp[ρ2(g(x, y)− V (x))]dy >

∫
Y \S(x)

exp[ρ1(g(x, y)− V (x))]dy. (3.1)

By the definition of γρ(·) and the fact that g(x, y)− V (x) = 0, for any y ∈ S(x) we have

that for any x ∈ X,

γρ1(x)− γρ2(x)

= ρ−1
1 ln

(∫
Y

exp[ρ1(g(x, y)− V (x))]dy

)
− ρ−1

2 ln

(∫
Y

exp[ρ2(g(x, y)− V (x))]dy

)
= ρ−1

1 ln

(
|S(x)|+

∫
Y \S(x)

exp[ρ1(g(x, y)− V (x))]dy

)
−ρ−1

2 ln

(
|S(x)|+

∫
Y \S(x)

exp[ρ2(g(x, y)− V (x))]dy

)
.

Consider the case when |S(x)| ≥ 1. Since ln z is monotonously increasing and non-

negative valued when z ≥ 1, by (3.1) we have γρ1(x)−γρ2(x) ≤ 0 and, γρ1(x)−γρ2(x) = 0

only when |S(x)| = 1 and |Y \ S(x)| = 0.
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We now consider the case when |S(x)| < 1. For any fixed x ∈ X and ρ > 0,

by the Mean Value Theorem one can find c which lies between |S(x)| and |S(x)| +∫
Y \S(x)

exp[ρ(g(x, y)− V (x))]dy such that

ln

(
|S(x)|+

∫
Y \S(x)

exp[ρ(g(x, y)− V (x))]dy

)
= ln |S(x)|+ c−1

∫
Y \S(x)

exp[ρ(g(x, y)− V (x))]dy.

Thus, there exists c1 lies between |S(x)| and |S(x)|+
∫
Y \S(x)

exp[ρ1(g(x, y)−V (x))]dy

and c2 lies between |S(x)| and |S(x)|+
∫
Y \S(x)

exp[ρ2(g(x, y)− V (x))]dy such that

γρ1(x)− γρ2(x)

= (ρ−1
1 − ρ−1

2 ) ln |S(x)|+ ρ−1
1 c−1

1

∫
Y \S(x)

exp[ρ1(g(x, y)− V (x))]dy

−ρ−1
2 c−1

2

∫
Y \S(x)

exp[ρ2(g(x, y)− V (x))]dy.

Since ln |S(x)| < 0 and
∫
Y \S(x)

exp[ρ(g(x, y)− V (x))]dy tends to 0 at an exponential rate

as ρ→∞. It follows that for ρ1 ≥ ρ2 sufficiently large, γρ1(x)− γρ2(x) ≥ 0.

It is interesting to estimate the bounds of the difference between the integral entropy

function and the value function.

Proposition 3.2 Let x ∈ X and ρ > 0. If |S(x)| ≥ 1, then we have

0 ≤ γρ(x)− V (x) ≤ 1

ρ
ln |Y |. (3.2)

If |S(x)| < 1, then there exists positive constants Mx and mx such that

−ερ(x) ≤ γρ(x)− V (x) ≤ 0, (3.3)

where

ερ(x) := −1

ρ
ln(ρ−1|Y |)− ln

(
1− Mx

mx

|Y |
ρ

)
. (3.4)

for ρ large enough. If |S(x)| = 1 and |Y \ S(x)| = 0, we have γρ(x) = V (x).

Proof. First we consider the case when |S(x)| ≥ 1. Since g(x, y)−V (x) = 0 for y ∈ S(x),

we have

γρ(x) = V (x) + ρ−1 ln

(
|S(x)|+

∫
Y \S(x)

exp[ρ(g(x, y)− V (x))]dy

)
≥ V (x). (3.5)
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Since (∫
Y

exp[ρg(x, y)]dy

) 1
ρ

≤ |Y |
1
ρ exp max

y∈Y
g(x, y) = |Y |

1
ρ expV (x),

by the monotonicity of the logarithmic function, we have

γρ(x) ≤ V (x) + ρ−1 ln |Y |. (3.6)

Therefore, (3.2) follows by (3.5) and (3.6).

Note that if |S(x)| = 1 and |Y \ S(x)| = 0, we have γρ(x) = V (x) by the definition of

γρ.

Finally we consider the case when |S(x)| < 1. Since g(x, y) − V (x) < 0 for any

y ∈ Y \ S(x), we have∫
Y \S(x)

exp[ρ(g(x, y)− V (x))]dy → 0, as ρ→∞,

which implies that when |S(x)| < 1, for a sufficiently large ρ,

|S(x)|+
∫
Y \S(x)

exp[ρ(g(x, y)− V (x))] ≤ 1.

Therefore, for ρ large enough

γρ(x) = V (x) + ρ−1 ln

(
|S(x)|+

∫
Y \S(x)

exp[ρ(g(x, y)− V (x))]dy

)
≤ V (x). (3.7)

Give a partition {Y1, · · · , Yρ}, |Yj| = |Y |
ρ

, j ∈ {1, · · · , ρ}. For any x ∈ X, ȳ ∈ S(x), we

can find an index j̄ such that ȳ ∈ Yj̄. Since g(x, y) is continuously differentiable, by the

Mean Value Theorem, for any y ∈ Yj̄, there exists y′ which lies between y and ȳ such that

exp g(x, y) = exp g(x, ȳ) + [∇y exp g(x, y′)]T (y − ȳ).

Let mx = min
y∈Yj̄

exp g(x, y) and Mx = max
y∈Yj̄
‖∇y exp g(x, y)‖, thus for any y ∈ Yj̄,

exp g(x, y) ≥ exp g(x, ȳ)−Mx|Yj̄|. (3.8)

It follows from the previous proof and (3.8) that(∫
Y

exp[ρ(g(x, y)− V (x))]dy

) 1
ρ

≥
(
|Y |
ρ

(
min
Y1

exp[ρ(g(x, y)− V (x))] + · · ·+ min
Yρ

exp[ρ(g(x, y)− V (x))]

)) 1
ρ
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≥
(
|Y |
ρ

min
Yj̄

exp[ρ(g(x, y)− V (x))]

) 1
ρ

=

(
|Y |
ρ

(
min
Yj̄

exp[g(x, y)] exp[−V (x)])

)ρ) 1
ρ

=

(
|Y |
ρ

(
minYj̄ exp[g(x, y)]

exp[maxy∈Y g(x, y)]

)ρ) 1
ρ

≥
(
|Y |
ρ

(
exp[g(x, ȳ)]−Mx|Yj̄|

exp[g(x, ȳ)]

)ρ) 1
ρ

=

(
|Y |
ρ

) 1
ρ
(

1− Mx

exp[g(x, ȳ)]

|Y |
ρ

)
≥

(
|Y |
ρ

) 1
ρ
(

1− Mx

mx

|Y |
ρ

)
.

By the monotonicity of the logarithmic function,

ln

(∫
Y

exp[ρ(g(x, y)− V (x))]dy

) 1
ρ

≥ 1

ρ
ln(ρ−1|Y |) + ln

(
1− Mx

mx

|Y |
ρ

)
.

From the definition of γρ(x),

γρ(x)− V (x) = ρ−1 ln

(∫
Y

exp[ρ(g(x, y)− V (x))]dy

)
≥ 1

ρ
ln(ρ−1|Y |) + ln

(
1− Mx

mx

|Y |
ρ

)
. (3.9)

We complete the proof.

For a given positive integer ρ, we consider the following smoothing problem of (VP):

(VP)ρ min
x∈X

f(x)

s.t. γρ(x) ≤ 0.

Denote the feasible regions for problem (VP) and (VP)ρ by F and Fρ respectively. We

now investigate the relationships among the stationary points, the optimal solutions for

the smoothing problems and the original problem. First we give conditions under which an

accumulation point of the stationary sequence of the smoothing problems is a stationary

point of the original problem (VP).

Theorem 3.1 Assume that xρ is a stationary point of problem (VP)ρ, i.e., xρ satisfies

0 ∈ ∇f(xρ) + λρ∇γρ(xρ) +NX(xρ), (3.10)

λργρ(xρ) = 0, γρ(xρ) ≤ 0, (3.11)
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where λρ ≥ 0. Let x∗ be an accumulation point of the sequence {xρ} as ρ ↑ ∞. If either

the sequence of the multipliers {λρ} is bounded or the NNAMCQ for problem (VP) holds

at x∗. Then x∗ is a stationary point of the problem (VP).

Proof. Without loss of generality, assume that lim
ρ→∞

xρ = x∗. By the gradient consistency

property of γρ, there exists a subsequence K0 ⊆ N such that

lim
ρ→∞, ρ∈K0

∇γρ(xρ) ∈ ∂V (x∗).

When the NNAMCQ holds at x∗, the sequence {λρ} must be bounded otherwise a con-

tradiction arises. So we only need to prove the result for the case when the sequence {λρ}
is bounded. In this case, there is a subsequence K̄0 ⊆ K0 such that {λρ} is convergent.

Let λ̄ := lim
ρ→∞, ρ∈K̄0

λρ ≥ 0. By letting ρ→∞ with ρ ∈ K̄0 in (3.10),

0 ∈ ∇f(x∗) + λ̄∂V (x∗) +NX(x∗). (3.12)

Taking a limit in (3.11) for ρ ∈ K̄0, we get V (x∗) ≤ 0 and λ̄V (x∗) = 0 from Definition

3.1. From the above discussion, we know that x∗ is a stationary point of (VP).

The relationship between the locally optimal solutions of the approximating problems

(VP)ρ and the original problem (VP) can be derived as follows.

Proposition 3.3 Let x∗ be a locally optimal solution of problem (VP) and xρ is a locally

optimal solution of problem (VP)ρ in a neighbourhood of x∗ for some sufficiently large ρ.

If the calmness condition holds at x∗ for problem (VP) with the exact penalty λ∗, then we

have

0 ≤ f(x∗)− f(xρ) ≤ λ∗ερ(xρ), (3.13)

where ερ(x) is defined as in (3.4).

Proof. From the calmness condition, x∗ is also a locally optimal solution of problem

min
x∈X

f(x) + λ∗max{V (x), 0}.

Thus for sufficiently large ρ > 0 we have

f(xρ) + λ∗max{V (xρ), 0} ≥ f(x∗) + λ∗max{V (x∗), 0} = f(x∗). (3.14)

By Proposition 3.2, max{V (xρ), 0} ≤ ερ(xρ). If we also have that x∗ ∈ Fρ, (3.13)

follows by (3.14).

Theorem 3.1 and Proposition 3.3 suggest a method for finding stationary points and

locally optimal solutions of (VP) by which one solves the approximating problem (VP)ρ
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and updates the penalty parameter λρ. However the problem (VP)ρ is a constrained

optimization problem which may be solved by using a penalty method. In this paper, we

suggest to use the smoothing projected gradient algorithm [24, Algorithm 3.1]. The idea

is to approximate the function max{x, 0} by 1
2
(
√
x2 + ρ−1 + x) and the value function

V (x) by its smoothing function γρ(x) to obtain the following smooth penalty problem of

(VP)ρ:

(VP)λρ min Gλ
ρ(x) := f(x) +

λ

2

(√
γ2
ρ(x) + ρ−1 + γρ(x)

)
s.t. x ∈ X.

We now describe the smoothing projected algorithm [24, Algorithm 3.1] applied to

our problem (SIP). Note that we denote by PX the projection operator onto X, that is,

PX [x] := argmin{‖z − x‖ : z ∈ X}.

Algorithm 3.1 Let {β, γ, σ1, σ2} be constants in (0, 1) with σ1 ≤ σ2, {σ, σ′, η̂} be con-

stants in (1,∞) and ε be a small positive number. Choose an initial point x0 ∈ X,

an initial smoothing parameter ρ0 > 0, an initial penalty parameter λ0 > 0 and set

k := 0, s := 0.

1. Let zk0 := xk and zks+1 := PX [zks − αs∇Gλk
ρk

(zks )], where αs := βls, ls ∈ {0, 1, 2 · · ·} is

the smallest number satisfying

Gλk
ρk

(zks+1)−Gλk
ρk

(zks ) ≤ σ1∇Gλk
ρk

(zks )T
(
zks+1 − zks

)
(3.15)

and βls ≥ γ, or ᾱs := βls−1 such that z̄ks+1 := PX [zks − ᾱs∇Gλk

ρk
(zks )] satisfies

Gλk
ρk

(z̄ks+1)−Gλk
ρk

(zks ) > σ2∇Gλk
ρk

(zks )T
(
z̄ks+1 − zks

)
. (3.16)

If

‖zks+1 − zks‖
αs

< η̂ρ−1
k , (3.17)

set xk+1 := zks+1, ρk+1 := σρk, s := 0, go to Step 2. Otherwise, set s = s + 1, and

go to Step 1.

2. If

γρk(x
k+1) ≤ 0, (3.18)

go to Step 3. Otherwise, set λk+1 := σ′λk, k = k + 1, and go to Step 1.
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3. If

‖PX [xk+1 −∇Gλk
ρk

(xk+1)]− xk+1‖ = 0, (3.19)

or ‖xk+1 − xk‖ ≤ ε, terminate. Otherwise, set k = k + 1, and go to Step 1.

Theorem 3.2 [24, Theorems 3.1, 3.2 and 3.3] Let {xk} be a sequence generated by

Algorithm 3.1.

(1) If x∗ is an accumulation point of {xk} and the sequence {λk} is bounded, then x∗ is

a stationary point of (VP).

(2) If lim
k→∞

xk = x∗ and the ENNAMCQ holds at x∗, then the sequence {λk} is bounded

and hence x∗ is a stationary point of problem (VP).

(3) Assume that the ENNAMCQ holds for (VP) at any point x ∈ X satisfying V (x) ≥ 0.

Then any accumulation point of {xk} is a stationary point of (VP).

Suppose that Algorithm 3.1 terminates within finite iterations when the condition

(3.19) holds at xk+1. When certain second order sufficient condition holds, we can estimate

the true optimal objective function value for a nearby locally optimal solution with the

value f(xk+1). To derive these results, we first state and prove the following lemma.

Lemma 3.2 Let {xk} be a sequence generated by Algorithm 3.1. Assume that x̄ is an

accumulation point of the sequence. Let x∗ be a locally optimal solution of problem (VP)

in a neighbourhood of x̄. If {λk} is bounded, then for sufficiently large k,

f(x∗)− f(xk+1) ≤ cρ−1
k+1, (3.20)

where c := Lη̂ σ
σ−1

with σ ∈ (1,+∞) as in Algorithm 3.1 and L := |∇f(xk+1)|+ 1.

Proof. Since {λk} is bounded, we know that γρk(x
k+1) ≤ 0 from condition (3.18).

Since γρ(x) is a smoothing function of V (x), it follows that V (x̄) ≤ 0. Therefore by

the optimality of x∗, f(x∗) ≤ f(x̄).

When k is large enough, from the Taylor expansion,

f(x̄) = f(xk+1) +∇f(xk+1)T (x̄− xk+1) + o(‖x̄− xk+1‖).

Thus,

|f(x̄)− f(xk+1)| = |∇f(xk+1)T (x̄− xk+1) + o(‖x̄− xk+1‖)|

≤ |∇f(xk+1)|‖x̄− xk+1‖+ ‖x̄− xk+1‖

≤ (|∇f(xk+1)|+ 1)‖x̄− xk+1‖.
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By condition (3.17) and the continuity of f on a bounded set,

|f(x̄)− f(xk+1)| ≤ L‖x̄− xk+1‖

≤ L
∑
l≥k

‖xl+1 − xl+2‖ < Lη̂
∑
l≥k

ρ−1
l+1

= Lη̂ρ−1
k+1(1 + σ−1 + σ−2 + · · ·) = cρ−1

k+1.

By the Taylor expansion we may take L := |∇f(xk+1)| + 1. Thus the proof is complete.

Theorem 3.3 Assume that f is twice continuously differentiable. Let xk+1 be a point

generated by Algorithm 3.1 which is terminated when condition (3.19) holds. Let µk :=

µλkρk (xk+1) with µλρ(x) := λ
2

(
1 + γρ(x)√

γ2
ρ(x)+ρ−1

)
. Suppose that for every nonzero vector d ∈

TX(xk+1),

dT∇2Lλkρk (xk+1)d > 0, (3.21)

where Lλρ(x) := f(x) + µkγρ(x) and there exists an ε > 0 such that |µkγρk(xk+1)| ≤ ε.

Assume that x∗ is a locally optimal solution of problem (VP)and {λk} is bounded. When

|S(xk+1)| < 1, we have

−(ε+ µk max{0, ρ−1
k ln |Y |}) ≤ f(x∗)− f(xk+1) ≤ cρ−1

k+1, (3.22)

where c is a constant denoted in Lemma 3.2. When |S(xk+1)| ≥ 1, we have

−(ε+ µkρ
−1
k ln |Y |) ≤ f(x∗)− f(xk+1) ≤ 0. (3.23)

Proof. By condition (3.19) we have

0 ∈ ∇Gλk
ρk

(xk+1) +NX(xk+1) = ∇f(xk+1) + µk∇γρk(xk+1) +NX(xk+1).

Since the second order condition (3.21) holds, xk+1 is a locally optimal solution of the

penalized problem of (V P )ρk :

min
x∈X

f(x) + µkγρk(x). (3.24)

Thus,

f(xk+1)− ε ≤ f(xk+1) + µkγρk(x
k+1) ≤ f(x∗) + µkγρk(x

∗). (3.25)

By Proposition 3.2, if |S(x∗)| ≥ 1, γρk(x
∗) ≤ ρ−1

k ln |Y | while if |S(x∗)| < 1, γρk(x
∗) ≤ 0.

When |S(xk+1)| < 1, (3.22) follows from the Lemma 3.2 and (3.25).

When |S(xk+1)| ≥ 1, we have V (xk+1) ≤ 0 from (3.18) and Proposition 3.2, thus xk+1

is a feasible solution of (VP). Then f(x∗) ≤ f(xk+1), which guarantees (3.23).
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Theorem 3.4 Assume that f is twice continuously differentiable. Let xk+1 be a point

generated by Algorithm 3.1 which is terminated when condition (3.19) holds. Furthermore

suppose that the second order sufficient condition (SOSC) for problem (VP)λk
ρk

holds: for

every nonzero vector d ∈ TX(xk+1),

dT∇2Gλk
ρk

(xk+1)d > 0. (3.26)

For any neighbourhood of xk+1, if there exists a locally optimal solution of problem (VP)

which is denoted by x∗ and {λk} is bounded, then

−λk(2ρ
− 1

2
k + max{0, ρ−1

k ln |Y |}) ≤ f(x∗)− f(xk+1) ≤ cρ−1
k+1, (3.27)

where c is a constant denoted in Lemma 3.2. In particular, when |S(xk+1)| ≥ 1, we have

−λk(2ρ
− 1

2
k + ρ−1

k ln |Y |) ≤ f(x∗)− f(xk+1) ≤ 0. (3.28)

Proof. From the definition of Gλ
ρ(·) and γρk(x

k+1) ≤ 0, we have

Gλk
ρk

(xk+1) = f(xk+1) +
λk
2

(√
γ2
ρk

(xk+1) + ρ−1
k + γρk(x

k+1)

)
≥ f(xk+1) +

λk
2

(
|γρk(xk+1)|+ γρk(x

k+1)
)

= f(xk+1). (3.29)

Since the conditions (3.19) and (3.26) hold, we know that xk+1 is a locally optimal solution

of problem (VP)λk
ρk

, thus

Gλk
ρk

(xk+1) ≤ Gλk
ρk

(x∗) = f(x∗) +
λk
2

(√
γ2
ρk

(x∗) + ρ−1
k + γρk(x

∗)

)
. (3.30)

From (3.29) - (3.30), we have

f(x∗) ≥ f(xk+1)− λk
2

(√
γ2
ρk

(x∗) + ρ−1
k + γρk(x

∗)

)
. (3.31)

Consider the case where γρk(x
∗) ≤ 0,√

γ2
ρk

(x∗) + ρ−1
k + γρk(x

∗) ≤
√

(γρk(x
∗)− ρ−

1
2

k )2 + γρk(x
∗)

= −γρk(x∗) + ρ
− 1

2
k + γρk(x

∗)

= ρ
− 1

2
k . (3.32)

If γρk(x
∗) > 0, then x∗ is not a feasible solution of problem (V P )ρk , which implies that

|S(x∗)| ≥ 1 by Proposition 3.2. From (3.2), we have γρk(x
∗) ≤ ρ−1

k ln |Y |, thus,√
γ2
ρk

(x∗) + ρ−1
k + γρk(x

∗) ≤
√

(γρk(x
∗) + ρ

− 1
2

k )2 + γρk(x
∗)

= 2γρk(x
∗) + ρ

− 1
2

k

≤ 2ρ−1
k ln |Y |+ ρ

− 1
2

k . (3.33)
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Thus we have

f(x∗)− f(xk+1) ≥ −λk
2

(ρ
− 1

2
k + 2 max{0, ρ−1

k ln |Y |}) (3.34)

from (3.31)-(3.33).

Thus, (3.27) follows from the Lemma 3.2. Furthermore, if |S(xk+1)| ≥ 1, then xk+1

is a feasible solution of problem (VP) from Proposition 3.2. Since x∗ is a locally optimal

solution of problem (VP), we have f(xk+1) ≥ f(x∗), which guarantees (3.28) together

with (3.34). The proof is complete.

4 Numerical results

In this section, we illustrate the computational behaviour and convergence results pre-

sented in Section 3. For the numerical illustration in this section we implement Algorithm

3.1 in MATLAB.

In Examples 4.1 and 4.2 there are two semi-infinite constraints. We now explain how

to modify our results to the multiple semi-infinite constraints case:

(SIP)p min
x

f(x)

s.t. gj(x, y) ≤ 0, ∀y ∈ Y, j = 1, · · · , p

x ∈ X,

where gj : Rn ×Rm → R (j = 1, . . . , p) are continuously differentiable and the rest of the

problem data follow the same assumptions as (SIP).

We first extend the extended EMFCQ to (SIP)p. Let Sj(x̄) denotes the set of all

maximizers of gj(x̄, y) over y ∈ Y and denote the index set

I(x̄) := {j = 1, · · · , p : gj(x̄, y) ≥ 0 ∀y ∈ Sj(x̄)}.

We say that a point x̄ ∈ X satisfies the extended EMFCQ for problem (SIP)p if either

gj(x̄, y) < 0 for all y ∈ Y and all j = 1, · · · , p or there exists a direction d ∈ int TX(x̄) such

that ∇xgj(x̄, y)Td < 0, for all y ∈ Sj(x̄) and all j ∈ I(x̄). The following result provides

a sufficient condition for the extended EMFCQ that is very easy to verify.

Proposition 4.1 Let x̄ be an interior point of X. If either gj(x̄, y) < 0 for all y ∈ Y and

all j = 1, · · · , p or there exists an index i ∈ {1, · · · , n} such that
∂gj(x̄,y)

∂xi
> 0 or

∂gj(x̄,y)

∂xi
< 0,

for any y ∈ Sj(x̄), j ∈ I(x̄), then the extended EMFCQ holds at x̄.

Proof. Consider the case when there exists an index i0 such that
∂gj(x̄,y)

∂xi0
> 0, for any

y ∈ Sj(x̄), and any j ∈ I(x̄). We select a direction d such that di := 0 if i 6= i0 and
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di0 := −1. Then we have

∇xgj(x̄, y)Td < 0, for all y ∈ Sj(x̄), j ∈ I(x̄). (4.1)

When there exists an index i0 such that
∂gj(x̄,y)

∂xi0
< 0, for any y ∈ Sj(x̄) and any j ∈ I(x̄),

we select di := 0 if i 6= i0 and di0 := 1. Thus (4.1) also holds. Therefore, the extended

EMFCQ holds at x̄.

For any j = 1, · · · , p, denote the value functions by

Vj(x) := max{gj(x, y) : y ∈ Y }.

We approximate the value function Vj(x) by the corresponding integral entropy function:

γjρ(x) := ρ−1 ln

(∫
Y

exp[ρgj(x, y)]dy

)
, j = 1, · · · , p.

We modify Algorithm 3.1 and apply it to (SIP)p in a straight forwarded manner. To

verify that an accumulation point is a stationary point, we give the following proposition.

Proposition 4.2 Let {xk+1} be a sequence generated by Algorithm 3.1. Suppose that

for any j = 1, · · · , p, the exact penalty parameter sequence {λkj}k is bounded, and there

exist a subset K ⊂ N such that lim
k→∞,k∈K

xk = x∗ and a subset J ⊆ {1, · · · , p} such that

lim
k→∞,k∈K

γjρk(x
k+1) = 0, j ∈ J . Let vj := lim

k→∞,k∈K
∇γjρk(x

k+1) j ∈ J. If

∇f(x∗)Td ≥ 0

for all d in the linearization cone of the feasible region:

L(x∗) := {d ∈ TX(x∗) : vTj d ≤ 0 j ∈ J},

then x∗ is a stationary point of (VP).

Proof. Since for any j = 1, · · · , p, {λkj}k is bounded, by the rule of Algorithm 3.1

γjρk(x
k+1) ≤ 0 for sufficiently large k. Since γjρ(x) is a smoothing function of the value

function Vj(x) and the gradient consistency holds, we have Vj(x
∗) = lim

k→∞
γjρk(x

k+1) = 0

and vj ∈ ∂Vj(x
∗), j = 1, · · · , p. By assumptions, d = 0 is an optimal solution to the

following linearized problem:

min
d

Φ(d) := ∇f(x∗)Td

s.t. vTj d ≤ 0, j ∈ J,

d ∈ TX(x∗).
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Since the objective function and the constraint functions are all linear in variable d, the

KKT condition holds at the optimal solution. Hence there exist multipliers µj ≥ 0, j ∈ J
such that

0 ∈ ∇f(x∗) +
∑
j∈J

µjvj +NX(x∗).

Thus x∗ is a stationary point of (VP).

Example 4.1 [11, Example 5.1] Finding the Chebyshev approximation of the function

sin(πy) by a quadratic function on the interval Y = [0, 1] amounts to solving the following

SIP:

min f(x) := x4

s.t. g1(x, y) := sin(πy)− x3y
2 − x2y − x1 − x4 ≤ 0, ∀ y ∈ Y = [0, 1],

g2(x, y) := − sin(πy) + x3y
2 + x2y + x1 − x4 ≤ 0, ∀ y ∈ Y = [0, 1].

In our numerical experiment, we set the initial point x0 = (1, 5,−3, 3), the parameters

β = 0.9, γ = 0.5, σ1 = σ2 = 10−6, ρ0 = λ0 = 100, η̂ = 5 ∗ 106, σ = σ′ = 10, ε = 10−12.

Since the stopping criteria ‖xk+1 − xk‖ ≤ ε holds, we terminate at the 10th iteration

(185 CPU seconds) with λk = 100 and ρk = 1.0 ∗ 1012. We obtain an accumulation point

x∗ ≈ (−0.028, 4,−4, 0.028).

We select d = (0, 0, 0, 1)T . Since∇xgj(x, y)Td = −1 < 0 and for any y ∈ Y , j = 1, 2, by

Proposition 4.1 the extend EMFCQ holds at every point x ∈ R4. Thus the sequence {λjk},
j = 1, 2 must be bounded and any accumulation point must be a stationary point of (VP).

We now verify this. Since lim
k→∞

γ1
ρk

(xk+1) ≈ −7.053 ∗ 10−6, lim
k→∞

γ2
ρk

(xk+1) ≈ −7.169 ∗ 10−6

(which we consider them to be zero), and

v1 = lim
k→∞
∇γ1

ρk
(xk+1) ≈ (−1,−0.5,−0.3618,−1),

v2 = lim
k→∞
∇γ2

ρk
(xk+1) ≈ (1, 0.4933, 0.3656,−0.9999),

the linearization cone

L(x∗) : = {d ∈ R4 : vT1 d ≤ 0, vT2 d ≤ 0}

≈ {d ∈ R4 : d = α1(−0.0064, 0.0056, 0.01, 0) + α2(1.473,−2.967, 0, 0.01)

+ α3(−0.732, 1.4834, 0, 0) + α4(−0.742, 1.4834, 0, 0), αi ≥ 0, i = 1, · · · , 4}.

Since ∇f(x∗) ≈ (0, 0, 0, 1), it follows that ∇f(x∗)Td ≥ 0, for any d ∈ L(x∗).

Hence by Proposition 4.2, x∗ is a stationary point of problem (VP).

20



Example 4.2 [11, Example 5.2]Consider the SIP associated with the design centring

problem:

min f(x) := −x3

s.t. g1(x, y) := 0.3 sin(π(x1 + x3 cos y))− (x2 + x3 sin y) ≤ 0, ∀ y ∈ Y = [0, 1],

g2(x, y) := (x1 + x3 cos y)2 + 0.3(x2 + x3 sin y)2 − 1 ≤ 0, ∀ y ∈ Y = [0, 1].

In our numerical experiment, we set the initial point x0 = (0.5, 0.5, 0.5), the parameters

β = 0.9, γ = 0.5, σ1 = 0.95, σ2 = 0.98, ρ0 = λ0 = 100, η̂ = 5 ∗ 105, σ = 20, σ′ = 10,

ε = 10−8.

Since the stopping criterion ‖xk+1− xk‖ ≤ ε holds, we terminate at the 26th iteration

(55 CPU seconds) with λk = 1000, ρk = 6.71 ∗ 1035 and the objective function value

−xk+1
3 = −0.77686. We obtain an accumulation point x∗ ≈ (0, 0.962, 0.77686). Note that

∇xg1(x, y) =

 0.3π cos(π(x1 + x3 cos y))

−1

0.3 cos(π(x1 + x3 cos y)) cos y − sin y


∇xg2(x, y) =

 2(x1 + x3 cos y)

0.6(x2 + x3 sin y)

2x1 + 0.6x2 sin y + x3(2 cos2 y + 0.6 sin2 y)

 .

We select d = (−1, 0, 0)T , then ∇xgj(x, y)Td < 0, for any y ∈ Y , x ∈ N(x∗) and j = 1, 2,

which implies the extended EMFCQ holds. Thus the sequence {λjk}, j = 1, 2 must be

bounded and hence the accumulation point must be a stationary point of (VP).

Since lim
k→∞

γ1
ρk

(xk+1) ≈ −2.71 ∗ 10−4 < 0, lim
k→∞

γ2
ρk

(xk+1) ≈ −2.22 ∗ 10−16 (which we

consider it to be zero), and

v1 = lim
k→∞
∇γ1

ρk
(xk+1) ≈ (0.474,−1, 1.106),

v2 = lim
k→∞
∇γ2

ρk
(xk+1) ≈ (−0.706, 0.824, 1.55),

the linearization cone

L(x∗) : = {d ∈ R3 : vT2 d ≤ 0}

≈ {d ∈ R3 : d = α1(1.168, 1, 0) + α2(−2.2, 0,−1)

+ α3(1.417, 0, 0), αi ∈ R+, i = 1, · · · , 3}.

Since ∇f(x∗) ≈ (0, 0,−1), it follows that ∇f(x∗)Td ≥ 0 for d ∈ L(x∗). Hence x∗ is a

stationary point of problem (VP).

In the above two examples, we almost terminated at the same point as in [11] and we

did not need too much cpu time.
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Example 4.3 [7, Example 6]Consider the SIP:

min f(x) := (x1 − 2x2 + 5x2
2 − x3

2 − 13)2 + (x1 − 14x2 + x2
2 + x3

2 − 29)2

s.t. g(x, y) := x2
1 + 2x2y

2 + exp(x1 + x2)− exp(y) ≤ 0, ∀ y ∈ Y = [0, 1].

In our numerical experiment, we choose the initial point x0 = (1, 2) and the parameters

β = 0.9, γ = 0.5, σ1 = σ2 = 10−6, ρ0 = λ0 = 100, η̂ = 2 ∗ 105, σ = σ′ = 10, ε = 10−12.

Since the stopping criterion ‖xk+1 − xk‖ ≤ ε holds, we terminate at the 8th iteration

(79.6 CPU seconds) such that f(xk+1) = 97.159, where λk = 1000 and ρk = 1.0 ∗ 1010.

We obtain an accumulation point x∗ ≈ (0.719951,−1.450488). Note that,

∇xg(x, y) =

(
2x1 + exp(x1 + x2)

2y2 + exp(x1 + x2)

)
,

thus ∂g(x,y)
∂x2

> 0, for any y ∈ Y , and for all x, which implies the extended EMFCQ holds

at all x from Proposition 4.1. Thus the sequence {λk} must be bounded and hence the

accumulation point must be a stationary point of (VP).

Since lim
k→∞

γρk(x
k+1) ≈ −7.074 ∗ 10−5 (which we consider it to be zero) and

v := lim
k→∞
∇γρk(xk+1) ≈ (1.92, 0.48),

the linearization cone

L(x∗) ≈ {d ∈ R2 : d = α1(−0.25, 1) + α2(−0.52, 0), αi ≥ 0, i = 1, 2}.

Since ∇f(x∗) ≈ (−9.458,−2.37), it follows that ∇f(x∗)Td ≥ 0 for any d ∈ L(x∗). Hence

x∗ is indeed a stationary point of problem (VP).

The last two examples satisfy the second order conditions introduced in Theorems 3.3

and 3.4. So we can give estimates for locally optimal solutions.

Example 4.4 [7, Example 2]

min f(x) :=
1

3
x2

1 +
1

2
x1 + x2

2

s.t. g(x, y) := (1− x2
1y

2)2 − x1y
2 − x2

2 + x2 ≤ 0, ∀ y ∈ Y = [0, 1].

In our numerical experiment, we choose the initial point x0 = (0, 0), the parameters

β = 0.9, γ = 0.5, σ1 = 10−6, σ2 = 10−6, ρ0 = 100, λ0 = 100, η̂ = 5 ∗ 105, σ = σ′ = 10.

We terminated after 9 iterations (4664 CPU seconds) when ‖∇Gλk
ρk

(xk+1)‖ = 8.9∗10−6

(which we consider it to be zero) with xk+1 = (−0.750008,−0.618064), f(xk+1) = 0.194540
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and γρk(x
k+1) = −6.719 ∗ 10−5, µk := µλkρk (xk+1) = 0.5527, where λk = 1000 and ρk =

1.0 ∗ 1011.

Note that,

∇xg(x, y) =

(
−4(1− x2

1y
2)x1 − y2

−2x2 + 1

)
,

for all x, there exists a d ∈ R2 with d1 = 0 such that ∇xg(x, y)Td > 0, which implies the

extended EMFCQ holds. Thus {λk} is bounded.

Since

∇2Lλkρk (xk+1) =

(
0.6667 0

0 0.8944

)
,

is a positive definite matrix, the second order condition is satisfied. Obviously |S(xk+1)| ≤
1 since |Y | = 1. Assume that x∗ is a locally optimal solution of problem (VP) in a

neighbourhood of xk+1. We also note that xk+1 does not change after k ≥ 8. By Theorem

3.3, we can estimate the value of f(x∗).

Since Y = [0, 1], ln |Y | = 0. We also have ε = |µkγρk(xk+1)| = 3.714 ∗ 10−5, cρ−1
k+1 =

1.006 ∗ 10−6. Thus using Theorem 3.3 we conclude that if x∗ is a locally optimal solution

of problem (VP) in a neighbourhood of xk+1, then we must have

0.19454− 3.714 ∗ 10−5 ≤ f(x∗) ≤ 0.19454 + 1.006 ∗ 10−6.

Example 4.5 [7, Example 14]Consider the SIP

min f(x) := c2 exp(x1) + exp(x2)

s.t. g(x, y) := y − exp(x1 + x2), ∀ y ∈ Y = [0, 1].

In [7], the author used a projected method to solve the first order formulation of the

problem and get a solution x∗ = (− ln |c|, ln |c|), y∗ = 1 such that f(x∗) = 2|c|.
In [23], c = 1.5 is set and a semismooth Newton method is used to obtain x∗ =

(−0.405, 0.405) such that f(x∗) = 3.

In our numerical experiment, we set c = 1.5 and choose the initial point x0 = (1, 0.5),

the parameters β = 0.9, γ = 0.5, σ1 = σ2 = 10−6, ρ0 = λ0 = 100, η̂ = 2 ∗ 105, σ = σ′ =

10.

We terminated after 9 iterations (4696 CPU seconds) when ‖∇Gλk
ρk

(xk+1)‖ = 1.68 ∗
10−5 (which we consider it to be zero) with xk+1 = (−0.405477, 0.405439), f(xk+1) = 3,

γρk(x
k+1) = −1.26 ∗ 10−5 and µλkρk (xk+1) = 1.5, where λk = 100 and ρk = 1.0 ∗ 1011.

23



Obviously, |S(xk+1)| ≤ 1. Note that,

∇xg(x, y) =

(
− exp(x1 + x2)

− exp(x1 + x2)

)
,

thus ∂g(x,y)
∂x1

< 0, for any y ∈ Y for all x, which implies the extend EMFCQ holds at

each point x from Proposition 4.1. Consequently the penalty parameter sequence {λk} is

bounded.

Since

∇2Gλk
ρk

(xk+1) =

(
227152 227150

227150 227152

)
,

is a positive definite matrix, the SOSC in Theorem 3.4 is satisfied.

Since Y = [0, 1], ln |Y | = 0. By calculation, we obtain cρ−1
k+1 = 6.936 ∗ 10−7. Thus by

Theorem 3.4, we conclude that if x∗ is a locally optimal solution of problem (VP) in a

neighbourhood of xk+1, then we must have

3− 6.32 ∗ 10−4 ≤ f(x∗) ≤ 3 + 6.936 ∗ 10−7.
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