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Abstract. In this paper, we design a numerical algorithm for solving a simple bilevel

program where the lower level program is a nonconvex minimization problem with a

convex set constraint. We propose to solve a combined problem where the first order con-

dition and the value function are both present in the constraints. Since the value function

is in general nonsmooth, the combined problem is in general a nonsmooth and noncon-

vex optimization problem. We propose a smoothing augmented Lagrangian method for

solving a general class of nonsmooth and nonconvex constrained optimization problems.

We show that, if the sequence of penalty parameters is bounded, then any accumulation
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Numerical experiments show that the algorithm is efficient for solving the simple bilevel

program.

Key Words. Bilevel program, value function, smoothing method, augmented La-

grangian method, partial calmness, principal-agent problem.

2010 Mathematics Subject Classification. 65K10, 90C26.

∗School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, China. E-mail:
xumengw@hotmail.com.
†Corresponding Author. Department of Mathematics and Statistics, University of Victoria, Victoria,

B.C., Canada V8W 3R4. E-mail: janeye@uvic.ca. The research of this author was partially supported
by NSERC.

1



1 Introduction.

In this paper, we propose a numerical algorithm for solving the following simple bilevel

program:

(SBP) min F (x, y)

s.t. gi(x, y) ≤ 0, i = m+ 1, · · · , l,

x ∈ X, y ∈ S(x),

where S(x) denotes the set of solutions of the lower level program

(Px) min
y∈Y

f(x, y),

where X is a closed and convex subset of Rn, Y is a closed, convex and compact subset

of Rm, f, F, gi : Rn × Rm → R are continuously differentiable functions, i = m+ 1, · · · , l,
and f is twice continuously differentiable in variable y. The simple bilevel program is a

special case of a general bilevel program where the constraint set Y may depend on x.

The reader is referred to [2, 10, 11, 27, 28] for applications and recent developments of

general bilevel programs. (SBP) has many applications including a very important model

in economics called the moral hazard model of the principal-agent problem [20].

The classical Karush-Kuhn-Tucker (KKT) approach (also called the first order ap-

proach) to solve bilevel program is to replace the solution set S(x) by the set of KKT

points of the lower level problem and consider the following single level optimization

problem:

(SP) min F (x, y)

s.t. 0 ∈ ∇yf(x, y) +NY (y),

gi(x, y) ≤ 0, i = m+ 1, · · · , l,

(x, y) ∈ X × Y,

where NY (y) := {ξ : 〈ξ, y′ − y〉 ≤ 0, ∀y′ ∈ Y } denotes the normal cone of Y at

y in the sense of convex analysis and ∇yf denotes the gradient of f with respect to

variable y. When the lower level constraint set Y has some structures, e.g. described

by some equality and/or inequality constraints, problem (SP) is reduced to the so-called

mathematical program with equilibrium constraints (MPEC) (see e.g. [19, 22, 23, 29]).

If for all x ∈ X, y ∈ S(x) lies in the interior of the set Y , then NY (y) = {0}m and (SP) is

a nonlinear program. For the case where the lower level objective function f is convex in

variable y, (SBP) and its first order reformulation (SP) are equivalent. In the case where

f is not convex in variable y, it is tempting to believe that a locally optimal solution of
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(SBP) must be a KKT point of the problem (SP). This turns out to be wrong as it is

shown by a counter example of Mirrlees [20]. Hence using the first order approach to solve

(SBP) is not valid in the sense that the true optimal solution may be missed.

In recent years, most of the numerical algorithms for bilevel programs assume that the

lower level program is convex with few exceptions [17, 21]. Since the first order approach

is not valid for (SBP) in general, it remains a very difficult problem to solve theoretically

and numerically. In this paper we will try to attack this difficult problem. In particular

we do not assume that f is convex in variable y.

It is obvious that (SBP) can be reformulated as the following single level optimization

problem involving the value function:

(VP) min F (x, y)

s.t. f(x, y)− V (x) ≤ 0, (1.1)

gi(x, y) ≤ 0, i = m+ 1, · · · , l,

(x, y) ∈ X × Y,

where V (x) := inf
y∈Y

f(x, y) is the value function of the lower level problem. This approach

was first proposed by Outrata [22] for a numerical purpose and used to derive necessary

optimality conditions by Ye and Zhu [30, 31]. Under the given assumptions, the value

function is Lipschitz continuous and hence the Fritz John type necessary optimality con-

dition of Clarke [6, Theorem 6.1.1] holds. However since the nonsmooth Mangasarian

Fromovitz constraint qualification (MFCQ) for problem (VP) will never be satisfied; see

[30, Proposition 3.2], the nonsmooth KKT condition may not hold at a local optimal

solution. For the nonsmooth KKT condition to hold at an optimal solution, Ye and Zhu

[30, 31] introduced the partial calmness condition under which the difficult constraint

(1.1) is moved to the objective function. Based on the value function approach, recently

[17] proposed a numerical algorithm to solve the problem (VP) when the problem (SBP)

is partially calm and to solve an approximate bilevel problem (VP)ε where the constraint

(1.1) is replaced by f(x, y)− V (x) ≤ ε for small ε > 0 otherwise.

The partial calmness condition, however, is rather strong and hence a local optimal

solution of a bilevel program may not satisfy the KKT condition of (VP). Recently Ye

and Zhu [32] proposed to combine the first order and the value function approaches. For

the problem (SBP), it amounts to consider the following combined program:

(CP) min F (x, y)

s.t. f(x, y)− V (x) ≤ 0, (1.2)

0 ∈ ∇yf(x, y) +NY (y), (1.3)
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gi(x, y) ≤ 0, i = m+ 1, · · · , l,

(x, y) ∈ X × Y.

The advantages of solving (CP) instead of the problem (SP) or (VP) are twofold. On

one hand since the value function constraint (1.2) is present, a locally optimal solution

of (SBP) is guaranteed to be a KKT point of the problem (CP) (it may not be a KKT

point of the problem (SP)). On the other hand since an extra constraint – the first order

condition (1.3) is present, the necessary optimality condition for problem (CP) is much

more likely to hold than the one for problem (VP) since there is more flexibility in choosing

a multiplier.

In this paper, we propose an algorithm to solve the problem (CP). To concentrate on

the main idea, we propose to solve (CP) under the following assumption.

Assumption 1.1 For every x ∈ X, y is an interior point of set Y if y ∈ S(x).

Under Assumption 1.1, NY (y) = {0}m and the constraint 0 ∈ ∇yf(x, y) +NY (y) reduces

to ∇yf(x, y) = 0. For some applications such as the principal-agent problem [20], it is a

common practice to assume that the solution of the lower level problem lies in the interior

of set Y which is a bounded interval since the solution of the lower level problem usually

can be estimated to lie in the interior of certain bounded interval.

It is well-known that the value function is in general a nonsmooth function even

though the function f is continuously differentiable. Danskin’s theorem ([7, Page 99]

or [9]) guaranteed that it is a Lipschitz continuous function with a computable Clarke

generalized gradient. Hence (CP) is a nonsmooth optimization problem with all functions

continuously differentiable except the value function V (x). Lin, Xu and Ye [17] proposed

the following integral entropy function to approximate the value function:

γρ(x) := −ρ−1 ln

(∫
Y

exp[−ρf(x, y)]dy

)
. (1.4)

It was shown [17] that the integral entropy function is a smoothing function for the value

function in the sense that γρ(z) → V (x) as z → x and ρ → +∞ and it satisfies the

gradient consistent property. A smoothing projected gradient algorithm is then proposed

to solve (VP) if the problem (VP) is partially calm and to solve (VP)ε otherwise. In

this paper we use the integral entropy function to approximate the value function and

propose to solve (CP) under the partial calmness condition. Although the partial calmness

condition is a very strong condition for (VP), it is likely to hold for (CP); see [32] and

hence we are able to solve a large class of the original bilevel problem (SBP) instead of

solving an approximate problem.

4



Problem (CP) is a nonsmooth and nonconvex constrained optimization problem. Re-

cently smoothing methods for solving nonsmooth and nonconvex unconstrained optimiza-

tion problems have been proposed [4, 34]. [17] combined the smoothing technique with

the gradient projected method to solve a class of nonsmooth and nonconvex constrained

optimization problems and used it to solve (VP). Smoothing technique has the advantage

over other algorithms such as the sampling gradient algorithm [8] for solving nonsmooth

and nonconvex problems in that one does not need to evaluate the function value or its

gradient. Such an algorithm turns out to be useful for solving bilevel programs since one

does not need to solve the lower level problem at every iteration. Solving problem (CP)

means that there are a lot more constraints than problem (VP) due to the first order

condition ∇yf(x, y) = 0. To handle more constraints we use the augmented Lagrangian

method. The augmented Lagrangian method is also known as the method of multipli-

ers. It has been studied from various angles in [14, 24, 25, 26] and is the basis for some

successful softwares such as ALGENCAN [1] and LANCELOT [16]. One of the main con-

tributions of this paper is the designing of a smoothing augmented Lagrangian method

for solving a general nonsmooth and nonconvex constrained optimization problem.

The rest of the paper is organized as follows. In Section 2, we propose a new algorithm

for solving a class of nonsmooth and nonconvex optimization problems where only one

constraint is nonsmooth by combining the smoothing technique and the classical aug-

mented Lagrangian algorithm and establish convergence for the algorithm. In Section 3,

we use the entropy integral function as a smoothing function of the value function and

apply the new algorithm to the problem (CP). We report our numerical experiments for

some bilevel programs and a moral hazard problem in Section 4.

We adopt the following standard notation in this paper. For any two vectors a and b

in Rn, we denote by aT b their inner product. Given a function G : Rn → Rm, we denote

its Jacobian by ∇G(z) ∈ Rm×n and, if m = 1, the gradient ∇G(z) ∈ Rn is considered as

a column vector. For a set Ω ⊆ Rn, we denote by intΩ, coΩ, and dist(x,Ω) the interior,

the convex hull, and the distance from x to Ω respectively. For a matrix A ∈ Rn×m, AT

denotes its transpose. In addition, we let N be the set of nonnegative integers and exp[z]

be the exponential function. For any sets Ωi ⊆ Rn, i = 1, · · · , p, we denote their direct

product by
p⊗
i=1

Ωi := {(ω1, · · · , ωp) : ωi ∈ Ωi, i = 1, · · · , p}.
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2 Smoothing augmented Lagrangian algorithm for

nonsmooth nonconvex programs

As discussed in the introduction, our aim is to solve the problem (CP) which is a non-

smooth constrained optimization problem where all functions except one is smooth. In

this section, we propose an algorithm which combines the smoothing technique with the

classical augmented Lagrangian algorithm to solve the following nonsmooth constrained

optimization problem:

(P) min G(x)

s.t. g0(x) ≤ 0,

gi(x) ≤ 0, i = 1, · · · , p,

gi(x) = 0, i = p+ 1, · · · , q,

x ∈ Ω,

where Ω ⊆ Rn is a nonempty closed convex set, G, gi : Rn → R are continuously dif-

ferentiable, i = 1, · · · , q, and g0 : Rn → R is locally Lipschitzian but not necessarily

differentiable.

We denote by ∂g0(x̄) the Clarke generalized gradient of g0 at x̄ and recall [6, Theorem

2.5.1] that ∂g0(x̄) = co {lim∇g0(xi) : xi → x̄, g0 is differentiable at xi} .

Definition 2.1 (KKT point) We call a feasible point x̄ of problem (P) a KKT point if

there exists scalars µ0, µ1, . . . , µq such that

0 ∈ ∇G(x̄) + µ0∂g0(x̄) +

q∑
i=1

µi∇gi(x̄) +NΩ(x̄),

µi ≥ 0, µigi(x̄) = 0, i = 0, · · · , p.

We now give a condition to verify that a feasible point is a KKT point which will be

used later to verify that an accumulation point is a KKT point.

Proposition 2.1 Let x̄ be a feasible point of problem (P) and v be an element of ∂g0(x̄).

Suppose that

∇G(x̄)Td ≥ 0 (2.1)

for all d in the linearization cone of the feasible region

L(x̄) : = {d ∈ TΩ(x̄) : ∇gi(x̄)Td = 0, i = p+ 1, · · · , q,

vTd ≤ 0, if g0(x̄) = 0,∇gi(x̄)Td ≤ 0, i ∈ I(x̄)},

where I(x̄) := {i = 1, · · · , p : gi(x̄) = 0}. Then x̄ is a KKT point of (P).
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Proof. By (2.1), d = 0 is an optimal solution to the following linearized problem:

min
d

Φ(d) := ∇G(x̄)Td

s.t. ∇gi(x̄)Td = 0, i = p+ 1, · · · , q,

vTd ≤ 0, if g0(x̄) = 0,

∇gi(x̄)Td ≤ 0, i ∈ I(x̄),

d ∈ TΩ(x̄).

Since the objective function and the constraint functions are all linear in variable

d, the KKT condition holds at the optimal solution. Hence there exist multipliers µi,

i = 0, · · · , q such that

0 ∈ ∇G(x̄) + µ0v +

q∑
i=1

µi∇gi(x̄) +NΩ(x̄), (2.2)

µi ≥ 0, i ∈ I(x̄), µi = 0, i = 1, · · · , p, i /∈ I(x̄),

µ0 ≥ 0, if g0(x̄) = 0, µ0 = 0, if g0(x̄) < 0.

Since v ∈ ∂g0(x̄), x̄ is a KKT point of (P).

Following from the Fritz John type necessary optimality condition [6, Theorem 6.1.1],

we define the following constraint qualification, which is weaker than the nonsmooth

MFCQ, but equivalent to the nonsmooth MFCQ if the interior of the tangent cone TΩ(x̄)

is not empty [15].

Definition 2.2 (NNAMCQ) We say that the no nonzero abnormal multiplier con-

straint qualification (NNAMCQ) holds at a feasible point x̄ of problem (P) if there is

no scalars µ0, µ1, . . . , µq not all zero such that

0 ∈ µ0∂g0(x̄) +

q∑
i=1

µi∇gi(x̄) +NΩ(x̄),

µi ≥ 0, µigi(x̄) = 0, i = 0, · · · , p.

In order to accommodate infeasible accumulation points in the numerical algorithm,

we now extend the NNAMCQ to infeasible points.

Definition 2.3 (ENNAMCQ) We say that the extended no nonzero abnormal multi-

plier constraint qualification (ENNAMCQ) holds at x̄ ∈ Ω if there is no scalars µ0, µ1, . . . , µq

not all zero such that

0 ∈ µ0∂g0(x̄) +

q∑
i=1

µi∇gi(x̄) +NΩ(x̄),

µi ≥ 0, µi(gi(x̄)−max{0, gi(x̄)}) = 0, i = 0, · · · , p.
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Definition 2.4 Assume that, for a given ρ > 0, gρ : Rn → R is a continuously differ-

entiable function. We say that {gρ : ρ > 0} is a family of smoothing functions of g0 if

lim
z→x, ρ↑∞

gρ(z) = g0(x) for any fixed x ∈ Rn.

Definition 2.5 [5] We say that a family of smoothing functions {gρ : ρ > 0} satis-

fies the gradient consistent property if for any x ∈ Rn, lim sup
z→x, ρ↑∞

∇gρ(z) is nonempty and

lim sup
z→x, ρ↑∞

∇gρ(z) ⊆ ∂g0(x), where

lim sup
z→x, ρ↑∞

∇gρ(z) :=
{

lim
k→∞
∇gρk(zk) : zk → x, ρk ↑ ∞

}
is the set of all limit points.

We approximate the nonsmooth function g0(x) by its smoothing function gρ(x), define

the augmented Lagrangian function as

Gλ,c
ρ (x) := G(x) +

1

2c

p∑
i=1

(
max{0, λi + cgi(x)}2 − λ2

i

)
+

q∑
i=p+1

(
λigi(x) +

c

2
(gi(x))2

)
+

1

2c

(
max{0, λ0 + cgρ(x)}2 − λ2

0

)
and consider the following unconstrained optimization problem for ρ > 0, c > 0, λ ∈ Rq+1:

(Pλ,c
ρ ) min

x∈Ω
Gλ,c
ρ (x).

Since (Pλ,c
ρ ) is a smooth optimization problem with a convex constraint set for any fixed

ρ > 0, c > 0, λ ∈ Rq+1, we suggest a projected gradient algorithm for problem (Pλ,c
ρ ).

We then update the iteration by increasing the smoothing parameter ρ and the penalty

parameter c and update the multiplier λ. We will show that any convergent subsequence

of iteration points generated by the algorithm converges to a KKT point of problem (P)

when ρ goes to infinity and the penalty parameter c is bounded. We will also show that,

under the ENNAMCQ, the penalty parameter must be bounded.

We propose the following smoothing augmented Lagrangian algorithm. In the algo-

rithm, we denote by PΩ the projection operator onto Ω, that is,

PΩ[x] := arg min{‖z − x‖ : z ∈ Ω}

and the residual function to measure infeasibility and complementarity:

σλρ (x) :=

max {|gj(x)|, j = p+ 1, · · · , q, |min{λi,−gi(x)}|, i = 1, · · · , p, |min{λ0,−gρ(x)}|} .
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Algorithm 2.1 Let {β, γ, σ1, σ2} be constants in (0, 1) with σ1 ≤ σ2, ε ≥ 0, ε1 ≥ 0 be

very small constants, {σ, σ′, η̂} be constants in (1,∞). Choose an initial point x0 ∈ Ω,

an initial smoothing parameter ρ0 > 0, an initial penalty parameter c0 > 0, an initial

multiplier λ̄0 ∈
⊗p

i=0[0, λmax] ×
⊗q

i=p+1[λmin, λmax], where λmin < 0 and λmax > 0 are

given constants and set k := 0, s := 0.

1. Let zk0 := xk and zks+1 := PΩ[zks − αs∇Gλ̄k,ck
ρk

(zks )], where αs := βls, ls ∈ {0, 1, 2 · · ·}
is the smallest number satisfying

Gλ̄k,ck
ρk

(zks+1)−Gλ̄k,ck
ρk

(zks ) ≤ σ1∇Gλ̄k,ck
ρk

(zks )T
(
zks+1 − zks

)
(2.3)

and βls ≥ γ, or ᾱs := βls−1 such that z̄ks+1 := PΩ[zks − ᾱs∇Gλ̄k,ck
ρk

(zks )] satisfies

Gλ̄k,ck
ρk

(z̄ks+1)−Gλ̄k,ck
ρk

(zks ) > σ2∇Gλ̄k,ck
ρk

(zks )T
(
z̄ks+1 − zks

)
. (2.4)

If

‖zks+1 − zks‖
αs

< η̂ρ−1
k , (2.5)

set xk+1 := zks+1, ρk+1 := σρk, s := 0, go to Step 2. Otherwise, set s = s + 1, and

go to Step 1.

2. Set

λk+1
0 = max{0, λ̄k0 + ckgρk(xk+1)}; (2.6)

λk+1
i = max{0, λ̄ki + ckgi(x

k+1)}, i = 1, · · · , p; (2.7)

λk+1
i = λ̄ki + ckgi(x

k+1), i = p+ 1, · · · , q. (2.8)

Take λ̄k+1 as the Euclidean projection of λk+1 onto
⊗p

i=0[0, λmax]×
⊗q

i=p+1[λmin, λmax],

and go to Step 3.

3. If

σλ
k+1

ρk
(xk+1) ≤ ε, (2.9)

go to Step 4. Else if k = 0 or

σλ
k+1

ρk
(xk+1) ≤ γσλ

k

ρk−1
(xk), (2.10)

set k = k + 1 and go to Step 1. Otherwise, set ck+1 := σ′ck, k = k + 1 and go to

Step 1.
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4. If

‖PΩ[xk+1 −∇Gλ̄k,ck
ρk

(xk+1)]− xk+1‖ = 0, (2.11)

or ‖xk+1 − xk‖ ≤ ε1, terminate. Otherwise, set k = k + 1, and go to Step 1.

It is easy to see that Step 1 of the algorithm is the classical projected gradient algorithm

with Armijo line search as in [3] when γ2 = β. Condition (2.3) on line search step size

forces a sufficient decrease of the function value while condition (2.4) guarantees that the

line search step size is not too small. In practice, only a small number of iterations are

required to compute the Armijo step size. Since Dunn [12] has shown that if zks+1 is not

stationary then (2.4) fails for all ᾱs sufficiently small, it follows that a line search step

αs can be always found provided that σ1 ≤ σ2. From the updating rule of ck and λk, we

know that the boundedness of {ck} implies the boundedness of {λk}.
Suppose that Algorithm 2.1 does not terminate within a finite number of iterations.

The next theorem shows the global convergence of Algorithm 2.1. We first make the

following standing assumption. Under the assumptions of this section the condition holds

automatically if the set Ω is compact.

Assumption 2.1 For any fixed ρ > 0, c > 0 and λ, Gλ,c
ρ (·) is bounded below and ∇Gλ,c

ρ (·)
is uniformly continuous on the level set {x ∈ Ω : Gλ,c

ρ (x) ≤ Γ} for any ρ > 0, λ ∈ Rq+1, c >

0,Γ > 0.

The following lemmas are well-known.

Lemma 2.1 [3, Lemma 2.1]

(a) For any x ∈ Rn and z ∈ Ω, we have (PΩ[x]− x)T (z − PΩ[x]) ≥ 0.

(b) PΩ[x] is a monotone operator, that is, (PΩ[y]−PΩ[x])T (y− x) ≥ 0 for x, y ∈ Rn. If

PΩ[y] 6= PΩ[x], then strict inequality holds.

Lemma 2.2 [3, Lemma 2.2] or [13] For any x ∈ Rn and d ∈ Rn, the function ψ defined

by

ψ(α) :=
‖PΩ(x+ αd)− x‖

α
, α > 0

is nonincreasing.

Note that by setting x := zks − αs∇Gλ̄k,ck
ρk

(zks ) and z := zks in Lemma 2.1 (a), the

following inequality can be obtained immediately:

∇Gλ̄k,ck
ρk

(zks )T
(
zks+1 − zks

)
≤ −
‖zks+1 − zks‖2

αs
. (2.12)
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Set y = zks−αs∇Gλ̄k,ck
ρk

(zks ) and x = zks−ᾱs∇Gλ̄k,ck
ρk

(zks ) in Lemma 2.1 (b), since ᾱs−αs > 0,

we have

∇Gλ̄k,ck
ρk

(zks )T (zks+1 − z̄ks+1) ≥ 0. (2.13)

Combining the proofs of [3, Theorem 2.3] and [34, Lemma 2.3], the following results

can be shown. We show it for completeness.

Lemma 2.3 Under Assumption 2.1, if Algorithm 2.1 does not terminate at Step 4, we

have for each k,

lim
s→∞

‖zks+1 − zks‖
αs

= 0, (2.14)

and hence lim
k→∞

ρk = +∞.

Proof. We assume for a contradiction that for any given k and any ε > 0, there is an

subsequence K ⊆ N such that for s ∈ K,

‖zks+1 − zks‖
αs

≥ ε.

Without loss of generality, in the following proof let K = N. Since {Gλ̄k,ck
ρk

(zks )}s∈K
converges, from condition (2.3) and (2.12), we have as s→∞

0← ∇Gλ̄k,ck
ρk

(zks )T
(
zks − zks+1

)
≥ εmax{εαs, ‖zks+1 − zks‖}.

Hence,

lim
s→∞

αs = 0, and lim
s→∞
‖zks+1 − zks‖ = 0.

This also implies that αs = βls < γ.

Lemma 2.2 implies that

‖zks+1 − zks‖2

αs
≥ αs

(
‖zks+1 − zks‖

αs

)(
‖z̄ks+1 − zks‖

ᾱs

)
≥ εβ‖z̄ks+1 − zks‖. (2.15)

Condition (2.13) together with (2.12) and (2.15) imply that for s ∈ K

∇Gλ̄k,ck
ρk

(zks )T
(
zks − z̄ks+1

)
≥ ∇Gλ̄k,ck

ρk
(zks )T

(
zks − zks+1

)
≥ εβ‖z̄ks+1 − zks‖. (2.16)

From ∇Gλ̄k,ck
ρk

(zks )T
(
zks − zks+1

)
→ 0, we have ‖z̄ks+1 − zks‖ → 0.

Since {Gλ̄k,ck
ρk

(zks )}s∈K is monotonously nonincreasing (since for any k, {zks} is a iter-

ation sequence of the projected gradient method), there must exists Γ > 0 such that for

θ ∈ [0, 1],

Gλ̄k,ck
ρk

(zks+1) ≤ Γ and Gλ̄k,ck
ρk

(θz̄ks+1 + (1− θ)zks ) ≤ Γ.
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From the Mean Value Theorem and the uniform continuity of ∇Gλ̄k,ck
ρk

(·) on the level

set, we have for each fixed k,∣∣∣Gλ̄k,ck
ρk

(z̄ks+1)−Gλ̄k,ck
ρk

(zks )−∇Gλ̄k,ck
ρk

(zks )T
(
z̄ks+1 − zks

)∣∣∣
=

∣∣∣∣(∇Gλ̄k,ck
ρk

(θz̄ks+1 + (1− θ)zks )−∇Gλ̄k,ck
ρk

(zks )
)T (

z̄ks+1 − zks
)∣∣∣∣

= o(‖θz̄ks+1 + (1− θ)zks − zks‖) = o(‖z̄ks+1 − zks‖),

for some θ ∈ [0, 1].

This equation guarantees that∣∣∣∣∣Gλ̄k,ck
ρk

(z̄ks+1)−Gλ̄k,ck
ρk

(zks )

∇Gλ̄k,ck
ρk (zks )T

(
z̄ks+1 − zks

) − 1

∣∣∣∣∣→ 0.

But this is impossible since from (2.12) and (2.16),

∇Gλ̄k,ck
ρk

(zks )T
(
z̄ks+1 − zks

)
< 0

and hence

Gλ̄k,ck
ρk

(z̄ks+1)−Gλ̄k,ck
ρk

(zks )

∇Gλ̄k,ck
ρk (zks )T

(
z̄ks+1 − zks

) < σ2 < 1,

by (2.4). The contradiction proves that (2.14) holds.

Condition (2.14) implies that for any xk, we can find some s such that condition (2.5)

holds. Then lim
k→∞

ρk = +∞ by the updating rule in Algorithm 2.1.

Theorem 2.1 Let Assumption 2.1 hold and suppose that the Algorithm 2.1 does not

terminate within finite iterations. Let x∗ be an accumulation point of the sequence {xk}
generated by Algorithm 2.1. If {ck} is bounded, then x∗ is a KKT point of problem (P).

Proof. Without loss of generality, assume that lim
k→∞

xk = x∗. From the definition of

the algorithm, the boundedness of {ck} is equivalent to saying that lim
k→∞

σλ
k+1

ρk
(xk+1) = 0.

Thus it follows by the continuity of gi and the fact that {gρ : ρ > 0} is a family of

smoothing functions of g0 that gi(x
∗) = 0, i = p+ 1, · · · , q, gi(x∗) ≤ 0, i = 0, · · · , p. Let

µλ,cρ,0(x) := max{0, λ0 + cgρ(x)},

µλ,cρ,i (x) := max{0, λi + cgi(x)}, i = 1, · · · , p,

µλ,cρ,i (x) := λi + cgi(x), i = p+ 1, · · · , q.

12



(i) Consider the case when there is a sequence K0 ⊆ N such that (2.11) holds for all

k ∈ K0. From the definition of the projection and the normal cone, it is easy to see that,

for each k ∈ K0, xk+1 is a stationary point of min
x∈Ω

Gλ̄k,ck
ρk

(x), that is,

0 ∈ ∇Gλ̄k,ck
ρk

(xk+1) +NΩ(xk+1) (2.17)

= ∇G(xk+1) +

q∑
i=1

µλ̄
k,ck
ρk,i

(xk+1)∇gi(xk+1) + µλ̄
k,ck
ρk,0

(xk+1)∇gρk(xk+1) +NΩ(xk+1).

From the definition of µλ,cρ (·) and the updating rule (2.6)− (2.8), we have µλ̄
k,ck
ρk,i

(xk+1) =

λk+1
i , i = 0, · · · , q. By the gradient consistent property of gρ, there exists a subsequence

K̂0 ⊆ K0 such that

lim
k→∞, k∈K̂0

∇gρk(xk+1) ∈ ∂g0(x∗).

Note that, by the boundedness of {λk}, there is a subsequence K̄0 ⊆ K̂0 such that

{λk} is convergent. Let λ∗ := lim
k→∞, k∈K̄0

λk.

By letting k →∞ with k ∈ K̄0 in (2.17),

0 ∈ ∇G(x∗) +

q∑
i=1

λ∗i∇gi(x∗) + λ∗0∂g0(x∗) +NΩ(x∗). (2.18)

It follows from (2.6) and (2.7) that λ∗i ≥ 0, i = 0, · · · , p. We now show that the comple-

mentary slackness condition holds. Suppose that gi(x
∗) < 0 for certain i ∈ {1, . . . , p}.

Then by the continuity of gi(x) we have gi(x
k+1) < 0. Thus λ∗i = lim

k→∞, k∈K̄0

λk+1
i = 0 since

lim
k→∞

σλ
k+1

ρk
(xk+1) = 0. Similarly by the fact that {gρ : ρ > 0} is a family of smoothing

functions of g0, we conclude that g0(x∗) < 0 implies gρk(xk+1) < 0. Consequently we have

λk+1
0 → 0 which implies that λ∗i = 0 if gi(x

∗) < 0, for i ∈ {0, · · · , p}. Therefore x∗ is a

KKT point of (P).

(ii) Consider the case when there is a sequence K1 ⊆ N such that (2.11) fails for all

k ∈ K1. Then similar to [17, Lemma 3.3], one can show that for k ∈ K1, there exists sk

such that xk+1 = zksk+1 and for each x ∈ Ω,

lim sup
k→∞

∇Gλ̄k,ck
ρk

(zksk)T (zksk − x) ≤ 0. (2.19)

We have from condition (2.5) that lim
k→∞, k∈K1

zksk = x∗. By the gradient consistent property

of gρ, there exists a subsequence K̂1 ⊆ K1 such that

lim
k→∞, k∈K̂1

∇gρk(zksk) ∈ ∂g0(x∗).

13



Note that, by the continuity of gi, i = 1, · · · , q, gρk and condition (2.5), there exists

a0, a1 > 0 such that

|gi(zksk)− gi(xk+1)| ≤ a0|zksk − x
k+1| < a1

ρk
, i = 1, · · · , q, ρk. (2.20)

Thus, by the definition of µλ,cρ (·) and the definition of λk+1 in (2.6)-(2.8) we have

µλ̄
k,ck
ρk,0

(zksk) ≤ max{0, λ̄k0 + ckgρk(xk+1) +
a1ck
ρk
} ≤ λk+1

0 +
a1ck
ρk

, (2.21)

µλ̄
k,ck
ρk,i

(zksk) ≤ max{0, λ̄ki + ckgi(x
k+1) +

a1ck
ρk
} ≤ λk+1

i +
a1ck
ρk

, i = 1, · · · , p,(2.22)∣∣∣µλ̄k,ckρk,i
(zksk)

∣∣∣ ≤ ∣∣∣∣λ̄ki + ckgi(x
k+1)± a1ck

ρk

∣∣∣∣ ≤ ∣∣∣∣λk+1
i ± a1ck

ρk

∣∣∣∣ , i = p+ 1, · · · , q.

Since {ck} is bound while {ρk} is unbounded by virtue of Lemma 2.3, {µλ̄k,ckρk
(zksk)} is

bounded. Hence, there is a subsequence K̄1 ⊆ K̂1 such that {µλ̄k,ckρk
(zksk)}k∈K̄1

is con-

vergent. Let µ̄ := lim
k→∞, k∈K̄1

µλ̄
k,ck
ρk

(zksk). It follows from the definition of µλ,cρ (·) that

µ̄i ≥ 0, i = 0, · · · , p.
On the other hand, let

Vk := ∇Gλ̄k,ck
ρk

(zksk) = ∇G(zksk) +

q∑
i=1

µλ̄
k,ck
ρk,i

(zksk)∇gi(zksk) + µλ̄
k,ck
ρk,0

(zksk)∇gρk(zksk)

Then

V := lim
k→∞, k∈K̄1

Vk ∈ ∇G(x∗) +

q∑
i=1

µ̄i∇gi(x∗) + µ̄0∂g0(x∗).

It follows from (2.19) that

V T (x∗ − x) ≤ 0, ∀x ∈ Ω.

This means −V ∈ NΩ(x∗) and hence (2.18) holds with λ∗ = µ̄. Now suppose that

g0(x∗) < 0. Then similarly as in the proof of part (i), we can show that λk+1
0 → 0 which

implies that µλ̄
k,ck
ρk,0

(zksk) → 0 and hence µ̄0 = 0. Similarly we can show that µ̄i = 0 if

gi(x
∗) < 0, i = 1, · · · , p. As a result, we always have µ̄igi(x

∗) = 0, i = 0, · · · , p. Therefore

x∗ is a KKT point of (P). This completes the proof.

From the proof of part (i) and part (ii) in Theorem 2.1, we show that the stopping

criteria in Step 4 of Algorithm 2.1 are reasonable since they lead to the KKT condition

at any accumulation point.

The next theorem gives a sufficient condition for the boundedness of {ck}.

Theorem 2.2 Let Assumption 2.1 hold and suppose that the Algorithm 2.1 does not

terminate within finite iterations. Let {xk} be a sequence generated by Algorithm 2.1.

Suppose that lim
k→∞

xk = x∗ and the ENNAMCQ holds at x∗ for (P). Then {ck} is bounded.
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Proof. Assume for a contradiction that the conclusion is not true. Thus there exists a

set K ⊆ N such that condition (2.9) fails for every k ∈ K sufficiently large. Then there

exist an index i1 ∈ {0, · · · , q}, such that when k is sufficient large one of the following

holds:

(a) When i1 = 0, gρk(xk+1) > ε.

(b) When i1 ∈ {1, · · · , p}, gi1(xk+1) > ε.

(c) When i1 ∈ {p+ 1, · · · , q} |gi1(xk+1)| > ε.

(i) First consider the case when there is a sequence K0 ⊆ K such that (2.11) holds for

all k ∈ K0. Similarly to the part (i) of Theorem 2.1, we know that condition (2.17) holds

for every k ∈ K0 with µλ̄
k,ck
ρk,i

(xk+1) = λk+1
i , i = 0, · · · , q.

By the gradient consistent property of gρ, there exists a subsequence K̂0 ⊆ K0 such

that

v0 = lim
k→∞, k∈K̂0

∇gρk(xk+1) ∈ ∂g0(x∗).

From the definition of µλ,cρ (·), under any case of (a)-(c), we have |µλ̄
k,ck
ρk,i1

(xk+1)| → ∞.

Thus ‖µλ̄k,ckρk
(xk+1)‖ → ∞. There exists a subsequence K̄0 ⊆ K̂0 and µi ∈ R, i = 0, · · · , q

not all equal to zero such that

lim
k→∞,k∈K̄0

µλ̄
k,ck
ρk,i

(xk+1)

‖µλ̄k,ckρk (xk+1)‖
= µi, i = 0, · · · , q.

It follows from the definition of µλ,cρ (·) that µi ≥ 0, i = 0, · · · , p.
Dividing by ‖µλ̄k,ckρk

(xk+1)‖ in both sides of (2.17) and letting k →∞ in K̄0, we have

0 ∈
q∑
i=1

µi∇gi(x∗) + µ0v0 +NΩ(x∗) ⊆
q∑
i=1

µi∇gi(x∗) + µ0∂g(x∗) +NΩ(x∗). (2.23)

Suppose that gi(x
∗) < 0 for certain i ∈ {1, . . . , p}. Then by the continuity of gi(x) we

have gi(x
k+1) < 0. Thus µi = lim

k→∞, k∈K̄0

µλ̄
k,ck
ρk,i

(xk+1) = 0 by the definitions µλ,cρ (·) and the

unboundedness of {ck}. Similarly by the fact that {gρ : ρ > 0} is a family of smoothing

functions of g0 we conclude that g0(x∗) < 0 implies gρk(xk+1) < 0. Consequently we have

µλ̄
k,ck
ρk,0

(xk+1) → 0 which implies that µi = 0 if gi(x
∗) < 0, for i ∈ {0, · · · , p}. Therefore

(2.23) contradicts the ENNAMCQ assumption.

(ii) Now we consider the case where condition (2.11) fails for every k ∈ K1 sufficiently

large. Then (2.19) holds for k ∈ K1. By the gradient consistent property of gρ, there

exists a subsequence K̂1 ⊆ K1 such that

v := lim
k→∞,k∈K̂1

∇gρk(zksk) ∈ ∂g0(x∗).
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On the other hand, by the continuity of gi, i = 1, · · · , q, gρk and condition (2.5),

when k is sufficiently large, under any case (a)-(c), we have gi1(z
k
sk

) > ε
2

for i1 ∈
{1, · · · , p, ρk}, |gi1(zksk)| > ε

2
for i1 ∈ {p + 1, · · · , q}. Thus µλ

k,ck
ρk,i1

(zksk) is unbounded.

Therefore, ‖µλ̄k,ckρk
(zksk)‖ → +∞ as K̂1 3 k → ∞. There exists a subsequence K̄1 ⊆ K̂1

and µi ∈ R, i = 0, · · · , q not all equal to zero such that

lim
k→∞,k∈K̄1

µλ̄
k,ck
ρk,i

(zksk)

‖µλ̄k,ckρk (zksk)‖
= µi, i = 0, · · · , q

and µi ≥ 0, i = 0, · · · , p from the definition of µλ,cρ (·).
Note that for any x ∈ Ω and k ∈ K̄1,

∇Gλ̄k,ck
ρk

(zksk)

‖µλ̄k,ckρk (zksk)‖
=
∇G(zksk)

‖µλ̄k,ckρk (zksk)‖
+

q∑
i=1

µλ̄
k,ck
ρk,i

(zksk)

‖µλ̄k,ckρk (zksk)‖
∇gi(zksk) +

µλ̄
k,ck
ρk,0

(zksk)

‖µλ̄kckρk (zksk)‖
∇gρk(zksk),

dividing by ‖µλ̄k,ckρk
(zksk)‖ in both sides of (2.19) and taking a limit within K̄1, we have(

q∑
i=1

µi∇gi(x∗) + µ0v

)T

(x∗ − x) ≤ 0,

which means

0 =

q∑
i=1

µi∇gi(x∗) + µ0v +NΩ(x∗) ⊆
q∑
i=1

µi∇gi(x∗) + µ0∂g(x∗) +NΩ(x∗).

It remains to show that the complementary slackness condition holds. Suppose that

gi(x
∗) < 0 for i ∈ {0, · · · , p}. Then we have gρk(zksk) < 0 and gi(z

k
sk

) < 0 for sufficiently

large k, thus µλ̄
k,ck
ρk,i

(zksk)→ 0. Thus if gi(x
∗) < 0 for i = 0, · · · , p, µi = 0. This contradicts

the ENNAMCQ assumption. From the above discussion, we know that {ck} is bounded.

The next corollary follows immediately from Theorems 2.1 and 2.2.

Corollary 2.1 Let Assumption 2.1 hold and suppose that the Algorithm 2.1 does not

terminate within finite iterations. Let x∗ be a limiting point of the sequence {xk} generated

by Algorithm 2.1. If the ENNAMCQ holds at x∗, then x∗ is a KKT point of problem (P).

To derive the convergence result for any accumulation point, one needs to assume the

ENNAMCQ holds for every infeasible point x ∈ Ω as shown in the following theorem.

Theorem 2.3 Let Assumption 2.1 hold and suppose that the Algorithm 2.1 does not

terminate within finite iterations. Let {xk} be a sequence generated by Algorithm 2.1.

Assume that the ENNAMCQ holds for (P) at any infeasible point x ∈ Ω. If {xk} is

bounded, then {ck} is bounded and hence any accumulation point of {xk} is a KKT point

of problem (P).
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Proof. Suppose to the contrary that the sequence {ck} is unbounded. Let x∗ be an

accumulation point of {xk}. Then there must exist an index i0 = 0, · · · , p such that

gi0(x
∗) ≥ ε or i0 = p + 1, · · · , q |gi0(x∗)| ≥ ε. Hence, by the assumption, the ENNAMCQ

holds at x∗ for (P). On the other hand, similarly as in the proof of Theorem 2.2, we can

show that the ENNAMCQ fails at x∗. As a contradiction, we have shown that {ck} is

bounded.

The second assertion follows from the boundedness of {ck} and Theorem 2.1 immedi-

ately.

3 Smoothing augmented Lagrangian algorithm for

simple bilevel programs

In this section, we apply Algorithm 2.1 to the problem (CP). Since Y is assumed to be

compact, Assumption 2.1 is satisfied automatically. Under Assumption 1.1, problem (CP)

takes the form:

(CP) min F (x, y)

s.t. f(x, y)− V (x) ≤ 0,

∇yf(x, y) = 0,

gi(x, y) ≤ 0, i = m+ 1, · · · , l,

(x, y) ∈ X × Y.

Recently Lin, Xu and Ye [17] have shown that the integral entropy function (1.4) is

a smoothing function of the value function and the gradient consistent property holds.

Hence the new algorithm introduced in Section 2 is applicable to problem (CP). For given

ρ > 0, c > 0 and λ ∈ Rl+1−m
+ × Rm, define the augmented Lagrange function:

Gλ,c
ρ (x, y) := F (x, y) +

1

2c

(
max{0, λ0 + c(f(x, y)− γρ(x))}2 − λ2

0

)
(3.1)

+
m∑
j=1

(
λj∇yjf(x, y) +

c

2
(∇yjf(x, y))2

)
+

1

2c

l∑
i=m+1

(
max{0, λi + cgi(x, y)}2 − λ2

i

)
and the residual function:

σλρ (x, y) := max { |min{λ0, γρ(x)− f(x, y)}|, |∇yjf(x, y)|, j = 1, · · · ,m,

|min{λi,−gi(x, y)}|, i = m+ 1, · · · , l }.

The algorithm can be stated as follows:
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Algorithm 3.1 Let {β, γ, σ1, σ2} be constants in (0, 1) with σ1 ≤ σ2, ε ≥ 0, ε1 ≥ 0 be very

small constants, {σ, σ′, η̂} be constants in (1,∞). Choose an initial point (x0, y0) ∈ X×Y ,

an initial smoothing parameter ρ0 > 0, an initial penalty parameter c0 > 0, an initial

multiplier λ̄0 ∈ [0, λmax] ×
⊗m

j=1[λmin, λmax] ×
⊗l

i=m+1[0, λmax], where λmin < 0 and

λmax > 0 are given constants and set k := 0, s := 0.

1. Let zk0 := (xk, yk) and zks+1 := PX×Y [zks − αs∇Gλ̄k,ck
ρk

(zks )], where αs := βls, ls ∈
{0, 1, 2 · · ·} is the smallest number satisfying

Gλ̄k,ck
ρk

(zks+1)−Gλ̄k,ck
ρk

(zks ) ≤ σ1∇Gλ̄k,ck
ρk

(zks )T
(
zks+1 − zks

)
(3.2)

and βls ≥ γ, or ᾱs := βls−1 such that z̄ks+1 := PX×Y [zks − ᾱs∇Gλ̄k,ck
ρk

(zks )] satisfies

Gλ̄k,ck
ρk

(z̄ks+1)−Gλ̄k,ck
ρk

(zks ) > σ2∇Gλ̄k,ck
ρk

(zks )T
(
z̄ks+1 − zks

)
. (3.3)

If

‖zks+1 − zks‖
αs

< η̂ρ−1
k , (3.4)

set (xk+1, yk+1) := zks+1, ρk+1 := σρk, s := 0, and go to Step 2. Otherwise, set

s = s+ 1 and go to Step 1.

2. Set

λk+1
0 = max{0, λ̄k0 + ck(f(xk+1, yk+1)− γρk(xk+1)}, (3.5)

λk+1
j = λ̄kj + ck∇yjf(xk+1, yk+1), j = 1, · · · ,m, (3.6)

λk+1
i = max{0, λ̄ki + ckgi(x

k+1, yk+1)}, i = m+ 1, · · · , l. (3.7)

Take λ̄k+1 as the Euclidean projection of λk+1 onto [0, λmax] ×
⊗m

j=1[λmin, λmax] ×⊗l
i=m+1[0, λmax], and go to Step 3.

3. If

σλ
k+1

ρk
(xk+1, yk+1) ≤ ε, (3.8)

go to Step 4. Else if k = 0 or

σλ
k+1

ρk
(xk+1, yk+1) ≤ γσλ

k

ρk−1
(xk, yk), (3.9)

set k = k + 1 and go to Step 1. Otherwise, set ck+1 := σ′ck, k = k + 1 and go to

Step 1.
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4. If

‖PX×Y [(xk+1, yk+1)−∇Gλ̄k,ck
ρk

(xk+1, yk+1)]− (xk+1, yk+1)‖ = 0, (3.10)

or ‖(xk+1, yk+1) − (xk, yk)‖ ≤ ε1, terminate. Otherwise, set k = k + 1, and go to

Step 1.

From Theorem 2.1, we have the following convergence result immediately.

Theorem 3.1 Suppose that the Algorithm 3.1 does not terminate within finite iterations.

If (x∗, y∗) is an accumulation point of {(xk, yk)} which is the sequence generated by Al-

gorithm 3.1 and the sequence {ck} is bounded, then (x∗, y∗) is a KKT point of problem

(CP).

The convergence results shown in Theorems 2.2 and 2.3 require the ENNAMCQ holds

at the limiting point. Unfortunately, the combined program (CP) will never satisfy the

ENNAMCQ [17] unless the lower level problem is replaced by an approximate problem.

However, the problem (CP) is very likely to satisfy the partial calmness or the weakly

calmness condition (see [32]). Hence the sequence {ck} is likely to be bounded. Therefore

any accumulation point of the iteration sequence is likely to be a KKT point by virtue of

Theorem 3.1.

In Proposition 2.1, we gave a condition to verify that a feasible point is a KKT point.

We now specialize it to give a condition using which we can verify that an accumulation

point is a KKT point. The following result follows from Proposition 2.1.

Proposition 3.1 Let {(xk, yk)} be a sequence generated by Algorithm 3.1. Suppose that

there is a subsequence K such that lim
k→∞,k∈K

(xk, yk) = (x∗, y∗) and

v := lim
k→∞,k∈K

∇γρk(xk+1).

If lim
k→∞,k∈K

σλ
k+1

ρk
(xk+1, yk+1) = 0 and

∇F (x∗, y∗)Td ≥ 0

for all d in the linearization cone

L(x∗, y∗) : = {d ∈ TX(x∗)× Rm : (∇f(x∗, y∗)− (v, 0))Td ≤ 0,

∇(∇yj)f(x∗, y∗)Td = 0, j = 1, . . . ,m, ∇gi(x∗, y∗)Td ≤ 0, i ∈ I(x∗, y∗)}

where I(x∗, y∗) = {i = m+1, · · · , l : gi(x
∗, y∗) = 0}, then (x∗, y∗) is a KKT point of (CP).
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Proof. lim
k→∞,k∈K

σλ
k+1

ρk
(xk+1, yk+1) = 0 implies that (x∗, y∗) is a feasible point of problem

(CP) and hence y∗ ∈ S(x∗). From Assumption 1.1, y∗ is an interior point of Y . Thus,

NY (y∗) = {0}m. Since by the gradient consistent property of {γρ : ρ > 0}, v ∈ ∂V (x∗).

Followed from Proposition 2.1, there exist multipliers µi, i = 0, · · · , l such that

0 ∈ ∇F (x∗, y∗) +
m∑
j=1

µj∇(∇yjf(x∗, y∗)) +
l∑

i=m+1

µi∇gi(x∗, y∗)

+ µ0(∇f(x∗, y∗)− ∂V (x∗)× {0}m) +NX(x∗)× {0}m.

µ0 ≥ 0, µi ≥ 0, i ∈ I(x∗, y∗),

µi = 0, i = m+ 1, · · · , l, i /∈ I(x∗, y∗),

Therefore (x∗, y∗) is a KKT point of problem (CP).

4 Numerical examples

We first test Algorithm 3.1 on the following two simple bilevel programs.

Example 4.1 (Mirrlees’ problem) [20] Consider Mirrlees’ problem

min F (x, y) := (x− 2)2 + (y − 1)2

s.t. y ∈ S(x),

where S(x) is the solution set of the lower level program

min f(x, y) := −x exp[−(y + 1)2]− exp[−(y − 1)2]

s.t. y ∈ [−2, 2].

Table 1: Mirrlees’ problem

ρ0 (xk+1, yk+1) ρ0 (xk+1, yk+1)

10 (1, 0.95735) 100 (1, 0.95769)

30 (1, 0.95753) 150 (1, 0.95751)

50 (1, 0.95772) 180 (1, 0.95741)

70 (1, 0.95754) 200 (1, 0.95754)

In our test, we chose the initial point (x0, y0) = (0.5, 0.5) and the parameters β =

0.7, γ = 0.5, σ1 = σ2 = 10−6, c0 = 100, λ̄0 = (100, 100), η̂ = 5 ∗ 105, σ = σ′ = 10. To

20



illustrate the influence of the initial smoothing parameter ρ0, we select different ρ0 in the

test (see Table 1).

To show that our algorithm leading to a KKT point of the problem, we verify the case

when ρ0 = 30. Since the stopping criteria σλ
k+1

ρk
(xk+1, yk+1) ≤ 5∗10−5 and ‖(xk+1, yk+1)−

(xk, yk)‖ ≤ 10−12 hold, we terminate at the 5th iteration. We obtain an accumulation

point (x∗, y∗) ≈ (1, 0.95753).

Since

∇f(x∗, y∗)− ( lim
k→∞
∇γρk(xk+1), 0) ≈ (0.000107, 0.00004439),

∇(∇yf)(x∗, y∗) ≈ (0.084831, 1.70041),

the linearization cone

L(x∗, y∗) ≈ {d ∈ R2 : d = α(−9.5417, 0.47602), α ∈ R+}.

It follows that for any d ∈ L(x∗, y∗),

∇F (x∗, y∗)Td ≥ 0.

Indeed if to the contrary that there exists d̂ ∈ L(x∗, y∗) such that

∇F (x∗, y∗)T d̂ < 0.

Then since ∇F (x∗, y∗) ≈ (−2,−0.0849396) and there exists α̂ > 0 such that d̂ ≈
α̂(−9.5417, 0.47602), we have

(−2,−0.0849396) · α̂(−9.5417, 0.47602) < 0

which is a contradiction since

(−2,−0.0849396) · (−9.5417, 0.47602) = 19.043 > 0.

Therefore, by Proposition 3.1, (x∗, y∗) is a KKT point of problem (CP) for Mirrlees’

problem. In fact it is the unique global minimum [20]. In [17], it was shown that the

smoothing projected gradient algorithm fails for the Mirrlees problem but succeeds to find

ε solutions. Hence the approach taken in this paper is better than the one in [17] in that

the solution for the original problem is found.

Example 4.2 [21, Example 5.2]

min F (x, y) := x2 − y

s.t. y ∈ argmin
y∈Y

{f(x, y) := ((y − 1− 0.1x)2 − 0.5− 0.5x)2},

x ∈ X := [0, 1], y ∈ Y := [0, 3].
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Mitsos et al. [21] found an approximate optimal solution for the problem to be (x̄, ȳ) =

(0.2106, 1.799).

In our numerical experiment, we chose the initial point (x0, y0) = (0, 0), the parameters

β = 0.9, γ = 0.5, σ1 = σ2 = 10−6, ρ0 = 100, c0 = 100, λ̄0 = (100, 100), η̂ = 2 ∗ 105, σ =

σ′ = 10. To illustrate the influence of the initial smoothing parameter ρ0, we select

different ρ0 in the test (see Table 2).

Table 2: Example 2

ρ0 (xk+1, yk+1) ρ0 (xk+1, yk+1)

30 (0.2054,1.7968) 75 (0.2047,1.7966)

50 (0.2054,1.7969) 100 (0.2027,1.7957)

To show that our algorithm leading to a KKT point of the problem, we verify the case

when ρ0 = 100. Since the stopping criteria σλ
k+1

ρk
(xk+1, yk+1) ≤ 10−7 and ‖(xk+1, yk+1) −

(xk, yk)‖ ≤ 10−12 hold, we terminate at the 8th iteration.

We obtain an accumulation point (x∗, y∗) ≈ (0.2027, 1.7957). Since

∇f(x∗, y∗)− ( lim
k→∞
∇γρk(xk+1), 0) ≈ (−0.00017, 0),

∇(∇yf)(x∗, y∗) ≈ (−2.032062, 4.81098),

the linearization cone

L(x∗, y∗) ≈ {d ∈ R2 : d = α(5.753397, 2.43012), α ∈ R+}.

Since ∇F (x∗, y∗) ≈ (3.5915,−1) and

(3.5915,−1) · α(5.753397, 2.43012) = 18.23α > 0, ∀α ∈ R+.

It follows that for any d ∈ L(x∗, y∗),

∇F (x∗, y∗)Td ≥ 0.

Therefore, by Proposition 3.1, (x∗, y∗) is a KKT point of the problem (CP). Comparing

our result with the result given by Mitsos et al. [21], our solution gives a lower objective

function value.

The moral-hazard problem in Economics arises when a principal (leader) hires an

agent (follower) to perform certain task in situations in which the principal can neither

observe nor verify the agent’s action (see e.g. [20]). The principal offers a contract to
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the agent. The agent will only accept the offer if it gives him a payoff that is not smaller

than the minimal acceptable payoff. The agent takes an action to maximize his payoff

that affects the principal’s payoff as well. The principal now chooses a contract which is

acceptable to the agent so as to maximize his payoff. We consider a moral-hazard model

in which the agent chooses an action y from a interval Y = [y, y]. The outcome can be

one of the N given alternatives o1, o2, · · · , oN . However, the probability for the agent to

generate the outcome oi is pi(y) when he takes action y ∈ Y . Let x = (x1. · · · , xN) ∈ RN

denote a contract, where xi is the money paid to the agent if the outcome oi occurs.

The agent’s and the principal’s utilities are denoted by v(xi) and u(oi − xi). c(y) is

the cost function of the agent’s action y. The minimal acceptable payoff of the agent is

X∗. The expected payoffs to the principal and agent with a contract x when the agent

takes action y are as follows:

Up(x, y) =
N∑
i=1

pi(y)u(oi − xi),

Ua(x, y) =
N∑
i=1

pi(y)v(xi)− c(y).

Therefore, a mathematical program for finding an optimal deterministic contract (x∗, y∗)

is

(PA) max Up(x, y)

s.t. y ∈ arg max
y′∈Y

Ua(x, y
′),

Ua(x, y) ≥ X∗.

The principal-agent problem (PA) is a special case of the bilevel program (SBP). We now

use Algorithm 3.1 to solve the following principal-agent problem.

Example 4.3 [18, Example 3.1] Consider a principal-agent problem with two possible

outcomes o1 = 150, o2 = 300, Y = [0.1, 3], p1(y) = 0.5y, p2(y) = 1 − 0.5y, X∗ = 5,

u(o − x) = o − x, v(x) =
√
x and c(y) = y. Then the problem can be written as the

following simple bilevel program:

min F (x, y) := −Up(x, y) = 0.5y(x1 − 150) + (1− 0.5y)(x2 − 300)

s.t. g1(x, y) := −Ua(x, y) +X∗ = 5− 0.5y
√
x1 − (1− 0.5y)

√
x2 + y ≤ 0,

y ∈ argmin
y∈Y

{f(x, y) := −Ua(x, y) = −0.5y
√
x1 − (1− 0.5y)

√
x2},

y ∈ Y.
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In [18], the author used the first order approach to obtain x̄ = (3.0416, 75.9576), ȳ =

2.2727.

In our numerical experiment, we chose the initial point x0 = (5, 75), y0 = 2 and the

parameters β = 0.9, γ = 0.5, σ1 = σ2 = 10−6, c0 = 100, λ̄0 = (100, 100, 100), η̂ =

5 ∗ 105, σ = σ′ = 10. To illustrate the influence of the initial smoothing parameter ρ0, we

select different ρ0 in the test (see Table 3).

To show that our algorithm leading to a KKT point of the problem, we verify the case

when ρ0 = 500. Since the stopping criteria σλ
k+1

ρk
(xk+1, yk+1) ≤ 5∗10−6 and ‖(xk+1, yk+1)−

(xk, yk)‖ ≤ 10−12 hold, we terminate at the 8th iteration. We obtain an accumulation

point (x∗, y∗) ≈ (3.04536, 75.9527, 2.2724).

Table 3: Example 3

ρ0 (xk+1, yk+1) ρ0 (xk+1, yk+1)

30 (3.04537,75.9528,2.2724) 100 (3.04536,75.9528,2.2724)

50 (3.04536,75.9527,2.2724) 300 (3.04536,75.9527,2.2724)

80 (3.04536,75.9528,2.2724) 500 (3.04556,75.9527,2.2724)

Since g1(x∗, y∗) ≈ −1.36 ∗ 10−6 (which can be consider as 0) and

∇f(x∗, y∗)− ( lim
k→∞
∇γρk(xk+1), 0) ≈ 1.0 ∗ 10−5(−0.5707,−0.0705,−0.4503),

∇(∇yf)(x∗, y∗) ≈ (0.0411074,−0.0082313, 0.6932),

∇g1(x∗, y∗) ≈ (−0.05930548,−0.04549653,−0.0000045),

the linearization cone

L(x∗, y∗) ≈ {d ∈ R3 : α1, α2 ∈ R+,

d = α1(2.246732,−2.928636,−0.16802) + α2(−0.374549, 2.6862, 0.0541118)}.

Since ∇F (x∗, y∗) ≈ (0.207, 0.7930,−11.0607) and

(0.207, 0.7930,−11.0607) · α1(2.246732,−2.928636,−0.16802)

+(0.207, 0.7930,−11.0607) · α2(−0.374549, 2.6862, 0.0541118)

= 0.0011α1 + 1.45α2 ≥ 0, ∀α1, α2 ∈ R+.

It follows that for any d ∈ L(x∗, y∗),

∇F (x∗, y∗)Td ≥ 0.

24



Therefore, by Proposition 3.1, (x∗, y∗) is a KKT point for problem (CP).

The numerical examples show that taking different initial parameter ρ0 leads to similar

results. According to our experience, if a very large initial parameter ρ0 is taken, one

should select a smaller σ to let ρk goes to infinity slowly. We suggest to choose a smaller

ρ0 since otherwise the convergence rate may be slower.
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