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The bilevel programming problem (BLPP)is a sequence of two optimization problems where the constraint
region of the upper level problem is determined implicitly by the solution set to the lower level problem. To
obtain optimality conditions, we reformulate BLPP as a single level mathematical programming problem
(SLPP) which involves the value function of the lower level problem. For this mathematical programming
problem, it is shown that in general the usual constraint qualifications do not hold and the right constraint
qualification is the calmness condition. It is also shown that the linear bilevel programming problem and the
minmax problem satisfy the calmness condition automatically. A sufficient condition for the calmness for the
bilevel programming problem with quadratic lower level problem and nondegenerate linear complementar-
ity lower level problem are given. First order necessary optimality condition are given using nonsmooth
analysis. Second order sufficient optimality conditions are also given for the case where the lower level
problem is unconstrained.
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1. INTRODUCTION

Let us consider a two-level hierarchical system where the higher level (hereafter the
“leader™) and the lower level (hereafter the “follower™) must find vectors xeR" and
yeR"™, respectively to minimize their individual objective functions F(x,v)and f(x.p)
subject to certain constraints. The leader is assumed to select his decision vector first
and the follower after that. Under these assumptions on the order of the play, the game
will proceed as follows: For any possible decision vector xe X < R" chosen by the
leader. the follower will react optimally by choosing his decision vector ye Y R" to
minimize the objective function f(x.y) subject to constraints (x,y) =0, glx. v <0
Assume that if the solution set S(X) of the follower’s problem is not a singleton. the
follower allows the leader to choose which of them is actually used. Hence the leader
now chooses his optimal decision vection xe X and yeS(x) to minimize his objective
F(x.v) In mathematical terms, given any decision vector xe X chosen by the leader,
the follower faces the ordinary (single level) mathematical programming problem

9




10 J.J.YEANDD. L. ZHU
14
/

parametered in x:

(P,) min f(xy)

st. h(x,y)=0
g(x,y)<0
yey,

while the leader faces the bilevel programming problem:
BLPP min F(x,y)
st. xeX,yeS(x),

where F,[:R"*™—R, h:R""™—R", g:R"*m™—R* are continuously differentiable,
X and Y are closed subset of R" and R™ respectively. We allow ¢ or d =0 to signify
the case in which there are no explicite equality or inequality constraints. In these
cases it is clear below that certain references to such constraints are simply to be
deleted.

The bilevel programming problem described above was first introduced in an
economic model by Von Stackelberg [16]. There is a considering amount of works
dealing with the existence, properties, approximations of solutions (e.g. [16], [10],
[187) and numerical methods (e.g. [17, [17], [12]). There are also some papers dealing
with optimality conditions (e.g. [11, [19], [13], [6])- The classical approach to derive
necessary optimality conditions for bilevel programming problem (see e.g. [1]) wasto
replace the solution set S(x) of the lower level problem with the set of vectors yeR"™
which are feasible for (P,) and at which the Lagrange multiplier rules are satisfied, and
to minimize over the original variables and the Lagrange multipliers. This approach
requires the convexity of the lower level problem and the problem of constraint
qualifications which ensure the necessary conditions are the Kuhn-Tucker type are
usually neglected. Zhang [19] extends the classical approach to allow the nonsmooth
problem data. Dempe [6] and Qutrata [13] derive necessary conditions for the case
where the solution set of the lower level problem S(x)={y(x)} is a singleton by
minimizing the objective function F(x, y(x)) over all xe X. This approach, however,
requires that the solution set S(x) is a singleton and the vector-valued function y(x)
has certain differentiability properties. The purpose of this paper is to derive optimality
conditions for general bilevel programming problems without convexity assumption
on the lower level problem and without the assumption that the solution set of the
lower level problem S(x) is a singleton. In particular, we will address the problem of
constraint qualification.

We now describe our approach. Define the value function of the lower level program-
ming problem as an extended value function V:X — R by

V(x):z 1nf {f(xa )’)'-h(-\'a y) = Oa g(xa \‘) < 03 )”E Y}

yeR™

where Ri= Ru {— g0} u {+ 0} is the extended real line and inf {@} = + o by con-
vention. Then BLPP can be reformulated as the following single level mathematical
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programming problem:
SLPP min F(x,y)
st f(x,y)—V(x)=0
h(x,y) =0
g(x,y)<0
xeX,ye?.

1t is known that ¥(x) is not smooth in general even in the case where all problem
data F(x,y), f(x, ), h(x,y),g(x,y) are continuously differentiable. In §2, we identify
conditions under which the value function V(x) is Lipschitz continuous, estimate
the Clarke generalized gradient of V(x) and apply the generalized Lagrange multiplier
rule to derive a necessary optimality condition of Fritz-John type for BLPP. The
difficulty with the derivation of a necessary condition of Kuhn-Tucker type is with
the constraint qualification. It is tempting to develop a necessary condition of Kuhn-
Tucker type by using the single level formulation SLPP by assuming a usual constraint
qualification commonly -used in mathematical programming problem such as
Mangasarian-Fromovitz condition (which are sometimes referred to as Cottle condition
[4]) holds for SLPP. In §3, we show that the usual constraint qualifications such
as linear independence condition, Slater condition and Mangasarian-Fromovitz con-
dition in general do not hold for SLPP due to the special structure of the constraint
f(x,y)— V(x)=0 and that the (partial) calmness condition is the right constraint
qualification condition. In §4, we show that the bilevel programming problem with
linear lower level problem and the minmax problem satisfy the calmness condition.
In §5, we identify the uniformly weak sharp minimum as a sufficient condition for
calmness and give a sufficient condition for calmness for the bilevel programming pro-
blem where the lower level problem is quadratic. An example is also given to show
that the uniformly weak sharp minimum is sufficient but not necessary for calmness.
Sufficient optimality conditions for the unconstrained bilevel programming problem
are given in §6.

9 NECESSARY CONDITIONS OF FRITZ-JOHN TYPE

In this section, we study the (generalized) differentiability of the value function for the
lower level problem and derive the necessary condition of Fritz-John type for BLPP.

Let y be feasible for (P,). The normal and abnormal multiplier sets for problem (P)
corresponding to y are the sets defined respectively by

Ml(p)={(nm)eRT%: 0eV,f(x,y)+ V,h(x, »)'v+ V,g(x )+ Ny, Y),
n20,{mg(x,y)> =0}

MO(y)={(v, m)eR* % OEV_‘,h(x,y)Tv + V),g(X,}’)TTC + Ny, Y),
n 20, {(mglx,y)> =0}
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where T denotes and the transpose and N(y, Y) denotes the Clarke normal coneto Y
atyeY. :

Denote by M2S(x):= U),Es(x,MS(y). The following proposition gives a sufficient
condition for Lipschitz continuity of the value function V(x) and an estimate for the
Clarke generalized gradient of V.

Proposition 2.1: Suppose the solution set of the lower level problem S(x) is nonempty
and every ye S(x) lies in the interior of Y. If MOS(x) = {0}, then the value function Vix)is
Lipschitz continuous near x and one has the following estimates for the Clarke generalized
gradient of V(x).

aV(x) = co{V f(x, )+ V. hix, y)'v + V g(x, y)Ym: ye S(x), (v, m)e Mi(y)}. (1)

Proof: Using an observation due to Rockafellar, we can rewrite the value function
V(x) as follows:

V(ix)= min {f{=%y)hzy)=0,g9(y)<0z—x= 0,yeY}.
(z,y)eR"> R™
Application of methods and results in Corollary 1 of Theorem 6.5.2 of Clarke [5] to
the above problem leads to the desired conclusion. |

The following Fritz-John type Lagrange multiplier rule can be obtained readily from
applying the nonsmooth Lagrange multiplier rule (Theorem 6.1.1 of Clarke [5]) to
SLPP and using the estimates for 8V (x) (Proposition 2.1).

Theorem 2.1: [Fritz-John type Lagrange multiplier rule]. Let (x*, v*) solve BLPP.
Suppose that x* lies in the interior of X and every yeS(x*) lies in the interior of Y.
Suppose that M2.S(x*) = {0}. Then there exists A€ {0, 1}, £ = 0,se R, reR* not all zero,

positive integers I, J,A; 20, Y YI Ay=1,y,eS(x*), ve R, ;€ R such that

0 = AV F(x*, %) + V. h(x*, y*)'s + V. g (x*, 3%)r + u[V, [ (x*,37%)
= 2 AV S,y + Vo hx®, yvy o+ Vg3, 1) 1) ]
i

0 =2V, F(x*y*) + V, h{x*3*)s + V, gx* 0*)r 4+ uV [ (X, 0)
r=0,{rg(x*y*)> =0
0=V, fIx*y)+ VR vy + Vo g(x* y)'m;

m; 2 0.{m; gix*, 33> =0.

Remark 2.1: 1> 0 results from the fact that the feasible points of SLPP are the same
as those satisfying the constraints with f(x,y) — V(x) <0 instead of f{(x,y)— V(x)=0.
The case where x* is in the boundary of X and there are some y&S(x*) lies in the
boundary Y can beeasily taken care by adding N(x* X) and N(y, Y)to the appropriate
places and changing the corresponding equalities to inclusions. For a clear presentation,
we will consider the case where x* is in the interior of X and that every ye S(x*) lies in
the interior of Y.

Remark 2.2: Since the assumption M2 S(x*)= 10} is only for the Lipschitz contin--

uity of the value function ¥(x) near x*, it can be replaced by any condition which
ensures the Lipschitz continuity of the value function.
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3. NECESSARY CONDITIONS OF KUHN-TUCKER TYPE

The necessary conditions of Theorem 2.1 may not provide useful information regarding
to optimality when the multiplier corresponding to F (which we have labeled 1)
vanishes, since then the function F being minimized is not involved. Various constraint
qualifications have been proposed in the literature to ensure that the multiplier
corresponding to the objective function in a mathematical programming problem does
not vanish. '

Let us first discuss the issue of constraint qualification for a general mathematical
programming problem with both equality and inequality constraints:

(P) min f(z)
st. hz)=0
g(2) <0

zeC,

where f: R* =R, h:R* = R', g: RF—RY. C = R*. We assume that C is a closed subset of
R*, each function f, h, g is Lipschitz continuous near any given point of C and
h(z) = (h,(2), hy(2),..., (2)), glz) = (g,(2),- ... g4l2)). We allow [ or d =0 to signify the
case in which there are no explicite equality or inequality constraints. In these cases itis
clear below that certain references to such constraints are simply to be deleted.

Let z be feasible for (P). The normal and abnormal multiplier sets for problem (P)
corresponding to z are the sets defined respectively by

M (z):={(r,s)eR'"%: Oedf(z)+ oh(z)"s + ég(z)'r + N(z,C),
r=0,r,g(2)) =0}

MO(z):={(r,5)eR'™: 0edh(=)"r + d¢g(z)"s + N(z, C),
rz0,{r,g(z)> =05,

where d¢(z) denotes the Clarke generalized gradient or the generalized Jacobian of ¢
at z. Note that the Kuhn-Tucker condition holds at a solution z to problem (P) is
equivalent to M*(z) # . Since the generalized Fritz-John Lagrange multiplier rule,
Theorem 6.1.1. of Clarke [5], can be rephrased as: if = solves (P) then one has

M(z)u M%)\ [0} ] # . ' (2)

all constraint qualification can be classified into two categories: the type that makes
structural assumptions about the data of the problem so that the set M°(z) of abnormal
multipliers necessarily reduces to 0 (which would imply M (=) s @ by virtue of (2)). and
the type that simply assures that M'(x) is nonempty (even though MPO(z) may not
reduce to 0).

The most commonly used constraint qualifications for a general mathematical
programming problem are the linear independence, Mangasarian-Fromovitz and
Slater conditions. For problem (P), the nonsmooth extension of the classical linear
independence and Mangasarian-Fromovitz conditions, first introduced by Hiriart-
Urruty in [9] can be stated as follows:
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(1) The (nonsmooth) linear independence condition holds at a feasible point z of (P)
which lies in the interior of C provided that the vectors

£nlnji=12,...,hiel= {i:g(z)=0,i=1,2,...,d}

are independent where ¢; is any vector in 0hj(z) and {; is any vector in dg,(z).

(2) The (nonsmooth) Mangasarian-Fromovitz condition holds at a feasible point z of
(P) which lies in the interior of C provided that the vectors &, j=1,2,..., I where
¢;is any vector in Ohj(z) are independent and for any ¢;e€dh(2), j=1,2,..., land
{,edg(z), il there exists a vector veR" such that

Euy=0 Vj=1,2,..,1
&vy<0 Viel.

The generalized Slater condition for problem (P) can be stated as follows: the (generalized)
Slater condition holds at a feasible point z of (P) which lies in the interior of C provided

(1) his continuous differentiable quasiconvex and quasiconcave, the vectors Vh(z),
j=1,2,...,1 are independent;
(2) there exists a z°e C such that g,(z°) <0 Vie!l and h(z% =0,
(3) For il g, is continuously differentiable and pseudoconvex at z and for i¢ 1 g; is
~ continuous.

It is well-known that the (generalized) Slater condition stated as above and the
classical linear independence condition implies the classical Mangasarian-Fromovitz
condition (see e.g. p. 171 of [4] for the proof). The fact that the nonsmooth linear
independence stated as above implies the nonsmooth Mangasarian-Fromovitz con-
dition can be proved in an exactly same way. The following result shows that the
Mangasarian-Fromovitz condition is equivalent to M O(z)={0}.

Proposition 3.1: The nonsmooth Mangasarian-Fromovitz condition holds at a feasible
point z of (P) which lies in the interior of C if and only if M®(z) = {0}.

Proof: The proof that the nonsmooth Mangasarian-Fromovitz condition holds at
a feasible point z of (P) implies M°(z) = {0} is exactly similar to the classical smooth
case (see p. 235 of Clarke [5]).

Conversely, suppose that M°(z) = {0}. Then the vectors ¢,j=1,2,...,1 where
¢;€0h(z) must be independent. Indeed, if not, there exists r = (ri»73,-..,1) # 0such that
0=Y,r;¢; which implies that (r, 0)eR!*? is a nonzero vector in M°(z). For any
¢;e ohy(z),j = 1,2,...,1and {;edg,(z), i€, there must exist a vector ve R" such that

Epoy=0 Vj=12,....1
vy <0 Viel

Indeed, if not, then by Motzkin’s transposition theorem (see e.8. [81), there must exist
a solution (r, s) to the following system:

0=Yri+ Yy s, s notallzero
J

iel

i.e., M®(z) contains & nonzero vector. H
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Therefore the linear independence, Slater condition and Mangasarian-Fromovitz
condition belong to the first category. Unfortunately, all the constraint qualifications
fall in the first category in general do not hold for SLPP as shown in the following
result.

Proposition 3.2: Let (x,y) bea solution of BLPP. Suppose that x lies in the interior of
X and every yeS(x) lies in the interior of Y. Assume that M?OS(x) = {0} and equality holds
in(1). Then there exists a nontrivial abnormal multiplier for SLPP, ie., the set of abnormal
multipliers for SLPP corresponding to (x, y) contains a nonzero element.

Proof: Since M2(y) = {0}, there exist (v, n)ert*? such that
0=V, f(xy)+ V,h(x,y)Tv + V,g(x, y)Tn
n>20,{n,g(x,y)> =0.

Since V,_f(x, )+ V. h(x,y)Tv+ V. g(x,y)TnedV(x) by assumption that equality (1)
holds in Proposition 2.1, we have

0eV f(x,y) — 0V (x) x {0} + Vh(x,y) Tv + Vg(x,y)Tn
n20,{mg(x,y)>=0

That is, (1,v,7) is a nontrivial abnormal multiplier for SLPP corresponding to (x, )
The proof is complete. B '

The above discussion indicates that in general the usual constraint qualifica-
tion is too strong for SLPP to hold. Therefore to find the right constraint qualification
(ie, it is satisfied by a large class of bilevel programming problems), one needs
to look for constraint qualifications which fall in the second category. The following
constraint qualification called calmness condition, first introduced by Clarke and
Rockafellar, fall in the second cagegory. It is weaker then the constraint qualifi-
cation MO°(z)={0} (see Corollary 5 of Theorem 6.5.2 in Clarke [5]). The
calmness condition for SLPP is defined in terms of the following fully perturbed
problem

st floy)— V) +u=0 (3)

glx,y)+v, <0
xeX, yey,

where v ={v,,v,) and it is known (c.f. Clarke [5]) that the concept of calmness is
closedly related to a numerical technique called “exact penalization™. Since we are
particularly interested in perturbing the constraint (3) because it is the essential
constraint that reflects the bilevel nature of the problem, we may consider the following
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partially perturbed problem:
P, min F(x,y)
st. fx,y)—Vx)+u=0
h(x,y)=0
g(x,y)<0

xeX, yeY.

Definition 3.1: Let (x, ) solves SLPP. SLPP is partially calm at (x, y) provided that
there exist 8 > 0 and ju> 0 such that, for all uedB, for all (x',y")e(x,y)+ 0B which are
feasible for P, we have

F(x',y)— F(x,y) + plul = 0.

The partial calmness condition defined as above is obvious weaker than the calmness
condition. In fact in Theorem 3.1, we will show that the partial calmness plus the usual
constraint qualification for the lower level problem is a constraint qualification for
SLPP. '

The concept of partial calmness is actually equivalent to the “exact penalization” as
shown in the following proposition whose proof is straightforward and will be omitted.

Proposition 3.3: Suppose that(x, y) solves SLPP. Then SLPP is partially calm at (x, y)

ifand only if there exists a >0 such that (x, ) is a local optimal solution to the following
penalized problem

SLPP min F(x,y)+ u(f(xy)—V(x)
st. h{x,¥)=0
glx, y) <0
xeX, yev.

Theorem 3.1: Let (x*.y*) solve BLPP and let SLPP be partially calm at (x*,y*).
Suppose x* lies in the interior of X and every ye S(x*)lies in the interior of Y. Assume that
MO.S(x*) = {0}. Then the conclusion of Theorem 2.1 holds with 7. =1 and > 0.

Proof: By virtuc of Proposition 3.3 there exists ;¢ > 0 such that (x*. y*) is an optimal
solution to the penalized problem SLPP. M2.5(x*) = {0} implies that M .(3*) = f0}.
By Proposition 3.1, M %(1*) = {0; if and only if the Mangasarian-Fromovitz condition
holds at any y*, ie. V i(x*y¥) for j = 1,2,...,c are linearly independent and there
exists a vector re R” such that

(Vg lx*, y¥)e) <0, ifiel={i:g;(x* y*)=0].
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Therefore Vh(x*, y*)for j=1,2,...,care linearly independent and there exists a vector
w = (0,v)e R"*™ such that

<th(X*ay*)aw> =0, j= L,2,...,c
(Vg (x*, y*)wy <0, ifiel= {i:g,(x*,y*)=0}.

That is, the Mangasarian-Fromovitz condition holds for the penalized problem SLPP.
Applying the Kuhn-Tucker Lagrange multiplier rule (Proposition 6.4.4 of Clarke
[5]) to SLPP and the estimate for aV(x*), the desired result follows. ]

Remark 3.1: The assumption M%.S(x*) = {0} can be replaced by any condition
which ensures both the I:igschitz continuity of the valued function and the calmness of
the penalized problem SLPP.

4. OPTIMALITY CONDITIONS FOR THE MINIMAX PROBLEM
AND THE BILEVEL PROGRAMMING PROBLEM
WITH LINEAR LOWER LEVEL PROBLEM

4.1 The Minimax Problem

Consider the following minmax problem:

min max {¢(x,y):h(x,y) = 0,9(x,y) <0},

xeX yeR™

where ¢:R"*™" =R, h:R""™"—>R’, g:R"* " — RY are continuously differentiable: The
minmax problem is a special case of BLPP with — f(x,y) = F(x,y):=¢(x, ).

Let the value function V(x):= inf { — ¢(x, y):h(x, ) =0, g(x, ) < 0, ye R™}. Then the
minmax problem is equivalent to the following problem

min - V(x)

st.  hi(x,y)=0
glx,y)<0
xeX, yeR",

which can be rewritten as
min  F(x,y) +(f(x,y) — V(x))
s.t.  hix,y)=0
glx,y)<0
xeX, yeR™

Therefore by the equivalence of the exact penalty and the partial calmness (Proposi-
tion 3.3), the minmax problem is partially calm at any solution (x, y).
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The necessary condition of Kuhn-Tucker type Theorem 3.1. for the minmax problem
can be stated as follows:

Theorem 4.1: Let (x*, y*) solve the minmax problem. Suppose x* isintheinterior of X.
Suppose that M3 5(x*) = {0}. Then there exists seR®, re R4, positive integers I, J,
A= 0,2 3 =1, e SIxT), v;;€ RY, m;€ R such that

0 = V,h(x*, y*)Ts + V,glx*,y*)'r
43 2V D (x*, i) — Vh(e*, ) vy — Vg, ¥ ')
ij

0= V),h(.-\’*,y*)Ts + V).g(.\'*.y*)Tr

rz0,{rglx*,y*)) =0

0=V, o(x*y)— V h(x*, .\',-)T"ij - V_vg(—\'*»_"i)Tni,i
nij = O: <7[ija g(X'*:yi)> =0.

In the unconstrained case, the above necessary condition reduces to the one derived by
Schmitendorf in [15].

4.2 The Bilevel Programming Problem with Linear Lower Level Problem
Consider the following bilevel programming problem with linear lower level problem:
LBLPP min F(x,V)

s.t. xeR"yeargmin{a'x+by:Cx+Dy—gs 0}

yeRm™

where F is continuously differentiable, «eR", beR™, Ce R'*" DeR!*™ geR"
The equivalent formulation of problem LBLPP is

SLBLPP min F{x,y)
st ax+by—Vx)=0
Cx+Dy—g<0
xeR" yeR"™.

where V(x)=min{d'x +b'y:Cx+ Dy —q < 0,yeR™}.
We now show that the bilevel programming problem with linear lower level problem
is partially calm. '

Propositiond.1: Let (x*,1*) solve LBLPP, then SLBLPP is partially calm at (x*, y*).

Proof: Fix an arbitrary 6> 0. Let wedB. Suppose that (X )e(x* v*)+ 3B is
feasible for the perturbed problem P, Le.,

a'x' by = V) +u=0 (4

Cx'+ Dy —g<0
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Let y(x') be a solution of the linear lower level problem, i.e.,
a'x’' + biy(x) — V(x)=0 | 4
Cx'+ Dy(x')—q<0.
Then (x', y(x')) is feasible for LBLPP and by the optimality of (x*, y*), one has
F(x,y)— F(x* y*) = F(x',y) — F(x,y(x))
z —Kelly' =yl (5)

where K is the Lipschitz constant of the function y — F(x, y). By definition of the value
function, since (x', y') is feasible for P,, u must be nonpositive. Therefore one has

(v —y(x)| = min {e: —ee <y —y <ee,a'x +b'y—V(x)=0,Cx"+Dy—¢q <0}

&Y

— max {(& — &)Y +E&lax = V) + ECK —a)
A SN

¢, — &, &b =D, =0,e'8 + e, =1¢,20,i= 1,1,3,4}

=max {&;(a'x + by — V(X)) + EL(Cx"+ Dy —q):
e’£1+e‘£2=1,£i>0,i=1,2,3,4} ‘ (6)
by linear programming duality |

= &,(x,y)(ax + bty — V(X)) + G,y (Cx Dy —q)

where (€,(x', '), £2(X', y), E5(x', '), EulX', y'))is a solution to the maximization problem

(6)
< E(xLy)@x + by = VX)) =& () (—u) = &5 (', ¥ ul, (7

where eeR™ is the vector with all components equal to 1. Since {4(x',y") may be
chosen as a component of a solution vertex of the linear programming problem (6)
and since the feasible region of (6) is independent of (x',)") and has a finite number of
vertices, one has

E4(x, ) € M=max [E5:(E1, €5, 85, Cy) 18 @ VETIEX of the constraint region of (6)}.

8)
Combining (5), (7) and (3), we conclude that problem SLBLPP is partially calm with
= KgM. B

Since the value function for the linear lower level problem is convex therefore
Lipschitz continuous and the corresponding constraints of the penalized problem
ST.PP is a linear system therefore regular, in the view of Theorem 3.1 and Remark 3.1
we have the Kuhn-Tucker type Lagrange multiplier rule for LBLPP in the following
form
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Theorem 4.2: Let (x*,y*) be a solution to LBLPP. Then there exist reR%, u>0,
positive integers I, J, 1; =0, 21 i 4; =1, y,€S(x¥), n;;€ R? such that

0=V F(x*y*)+C'r— /.LC’<Z Aij“ij)
ij

0=V, F(x* y*)+ D'r + ub
r20,{r,Cx* +Dy* —q)=0
0=b+D'ny

n[j > 03 <7Iij9

Cx*+ Dy, —q)=0.

5. UNIFORMLY WEAK SHARP MINIMUM AS A SUFFICIENT
CONDITION FOR PARTIAL CALMNESS

A function defined on a set Q = R"is said to have a sharp minimum at xe Q if there exists
an « > 0 such that

Plx)— (X)) Zallx —x|| Vxel

It is obvious that the notion of a sharp minimum implies uniqueness of the solution
of the problem. In order to include the possibility of a non-unique solution set, Ferris
[7] extended the notion of a sharp minimum to a weak sharp minimum as follows: Let
S be the non-empty optimal solution set of the problem

min ¢(x).
xefd

We say ¢ has a weak sharp minimum (on Q) if there exists an o > 0 such that
H(x) — p(y) = adist(x,S) VyeS,xel.

We now extend the notion of a weak sharp minimum to the family of parametric
mathematical programming problem {(P,): xeX}. We say that {(P,): xeX } has
a uniformly weak sharp minimum if there exists an o >0 such that

flx,y)—V(x)=dist(y,5(x)) Y(x,p)eX xY
s.thi{x,y) =0, g(x,y) <0, 9

The following result indicates that the uniformly weak sharp minimum ig a sufficient
condition for partial calmness.

Proposition 5.1: Suppose F(x,y) is Lipschitz continuous in y uniformly in x with
Lipschitz constant Ly and {(P,):x€ X} has a uniformly weak sharp minimum. Let (x*, y*)
solve BLPP. Then SLPP is partially calm at (x*, y*).

Proof: Fix any arbitrary 6 > 0. Let uedB. Let (x, y)e(x*, y*) + 5B be feasible for
the perturbed problem P, and y(x) by the projection of x onto the set S(x). Then by
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Lipschitz éontibuity of F and uniformly weak sharp minimum property (9), one has
Fx,y) — F(x*, y*) = F(x, ) — F(x, y(x))
> —Kelly -yl
= —Kp(f(x,y)— V(x)
= —Kpo(—u)= —Kgoful,
i.e., SLPP is partially calm in (x*,y%). H

Now consider the bilevel programming problem where the lower level problemis the
following parameteric quadratic programming problem:

OP. min f(xy)=3{y,0y)> +b'y+{»Ex>
st yeEQ,

where Q € R™*™is a symmetric and positive semidefined matrix, be R™, Ee R"*" and for
any given xeX, Q,1s a polyhedral in R™*™ The following result gives a sufficient
condition for the uniformly weak sharp minimum of {(QP,):xe X} and hence a suffi-
cient condition for the partial calmness of the BLPP where the lower level problem is
(QP,). Itis the generalization of the necessity part of Theorem 3.2 of Burke and Ferris
[2]) to the parametric case. Although the proof technique are taken from Burke and
Ferris [2], we include it here for the completeness.

Proposition 5.2: Suppose either
V,flx,y)=0 ¥xeX,yeS(x) (10)

or there exists a « >0 such that

IV, fx, )l Za2>0, VxeX,yeS(x) stlV,f{xl#0. (11)
Then { {QPX)Z_\'EX} has a uniformly weak sharp minimum provided

(ker (V2f(x, 7)) = span (V,f(x §)) + N(», Q,), VyeS(x) (12)
or equivalently

(V, fx, N N Ty, Q) = ker (V2f(x,7)) VxeX,yeSx), (13)

where § is any element in S(x), At {yeR":{y,x>=0 Vxe A} denotes the subspace
pependicular to A, span(d ) represents the subspace generated by d, T{y, A4) and ker(A)
denote the tangent cone to A at y and the nullspace of the matrix A respectively.

Before we prove the above result we first state the following discription of the solution
set of a convex program given by Mangasarian [11].

Lemma 5.1: Let S be the set of of solutions to the problem min (f3):yeQ) where

f:R"— R is a twice continious convex function and Q Is a convex subset of R". Let ¥€S.
Then

S=1yeQ:V (0 =V (I {VFLy = =0
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It is clear that for (QP,), this gives the solution set S(x) as
S(x) =Q,n {y:<V, %9,y — 5> =0} n {1V} f(x.9)(y —7) =0}
and since Q. is a polyhedral one has
T(y, S(x)) = T(y, )N (V, 1 (x, 7))* nker (V5 f(x, 7)) (14)
by virtue of Corollaries 16.4.2 and 23.8.1 of Rockafellar [14].

Proof of Proposition 5.2: By virtue of Theorem 2.6 of Burke and Ferris [2], it suffices
to show that for all xe X, ye S(x), there exists an a > 0 such that

e yd)zaldl ¥deT(y, Q)0 N(y,Skx)),

where f%(x,y;d) denotes the directional derivative of f with respect y in direction d.
Note that (14) and (12) implies that

K(x):= T(3, S()) = N(3,2,) + span (V,.f(x, 7)) + (ker (V; (%, 7)*
— N3, Q) +span(V, £ (x, 7)),

where 4%:={x*eR™ {x* x)<0 VxeA} denotes the polar of A. Therefore span
(V, f(x, 7)) = recession cone of K(x). It follows from p. 65 of Rockafellar [14] that

K(x)=span(V,f(x, 7)) + (K<) N (V,f (% 5))")- (15)
Since de T(y, Q) N(y, S(x)), one has
afjd| = xdist(d, T(y,5(x))
— s sup {(z(x),d y:z(x)e BAK(x)},

where the last equality follows from Theorem 3.1 of Burke and Han [3]. By virtue of
(15), z(x)e Bn K(x) implies

z2{x) = 2V, [ (x,7) + {(x)
with |A(x)] < n(x) where

IV S 3V, #0
n(x)=

0 otherwise
and {(x)e K(x)n(V, [ (x,7))*. Therefore
alld]| = asup { AV, 1(x, 7) + {(x), d:1Ax) [ < (),
{)EN(QINV, f(x TN
= osup { ANV, [ (x,§),d A < n(x))
<an(x)<V, £, P d)
<Y, ) = <V, flx,p)dd = [5(xd). B
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Remark/5.1: A generalization of Proposition 5.2 to the case where Q_ is a nonpoly-
hedral convex set can be easily obtained. Observe that the argument given above only
employs the polyhedrality of Q. to establish that (14) holds. However by Corollaries
16.4.2 and 23.8.1 of Rockafellar [14], (14) also holds under the assumption

rH(Q, — )N (Y, f (e, PN nker (V3 f(x, 7)) # D (16)

where rid debotes the relative interior of A. Therefore when the Q. is nonpolyhedral
convex set the conclusion of Proposition 5.2 is true under the additional assumption
(16).

The following result is an easy consequence of Propositions 5.1 and 5.2.

Corrollary 5.1: The bilevel programming problem where the lower level problem is the
quadratic programming problem QP is partially calm provided either (10) or (11) and
either (12) or (13) hold.

Remark 5.2: Note thatitis easy to verify that when P, 0, and E, are all equal to zero,
assumptions of Proposition 5.2 are satisfied. Therefore the BLPP with linear lower
level problem is partially calm as it was proved directly in Proposition 4.1.

Consider now a BLPP where the lower level problem is the following parametric
linear complementarity problem:

LCP, min f(x,y):z(_v,My—%q—#E.\")
st. My+q+Ex=0,y=0

where M eR™*™ is a symmetric and positive semidefinite matrix, ge R™ and EeR" ™"
Let A, denote the ith row of a matrix A and d, denote the ith component of a vector d.

We make a nondegeneracy assumption that there is a solution f(x) of LCP, which
satisfies

[N (B = I,

where I (v)=1{iMy+q;+Ex= 0} and J.(»)= {j:»;=0}. Obviously LCP, is
aspecial case of QP . As in the nonparametric case (See Theorem 3.7 of [2]). itiseasy to
verify that under either (10) or (11), (13) always holds. Therefore the following is an
immediate consequence of Corollary 5.1.

Corollary 5.2: The bilevel programming problem where the lower level problent is the
nondegenerate linear complementarity problem LCP, is partially calm provided either
(10) or {11) hold.

We now give an example to illustrate the use of Corollary 5.1,
Example 5.1: '
min  F{x.y. V)

st xe[—0.5.0.5].(r.r,)€arg min Hyplppxlgy €2isy <2

yi.v2

The set of optimal solution for the lower level problem is

Six)= 1! x [1.2], Yxe[-05.0.5]
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. Forallxe[ 05,051, yeSE = {1) x [L2L IV, /(s )l = Iy + 0 =1 +x>1/2>0.
So assumption (11) is satisfied. Since (V, f(x,y))* = {0} x R, ker V} f(x,y) = {0} x R
for all (x, y)e[ —0.5,0.5] x {1} x [1,2] and

T(y,Q,)=[0,00] x T(y,,[1,2]) VYxe[—0.5,0.5], yeS(x)

assumption (13) is satisfied. By Corollary 5.1, the BLPP considered is partially calm.
Now we give an example to show that uniformly weak sharp minimum is only
a sufficient condition for partial calmness but not necessary.
Consider problem

min Xx-+y
st. xe[—1,1],yeargmin {—2xy+y* —1<y<1}.
y

The solution set of the lower level problem S(x) = {x} for xe[ 1, 1]. It is obvious
that for any x, the lower level problem does not have a sharp minimum hence no
uniformly weak sharp minimum.

The value function V(x)= —x?, for all xe[—1,1]. The equ1valent formulation
SLPP is
min x4y
(x,y}eR?
s.t. (x—y)=0
—1I,<x<«1
—1<y<.

It is obvious that (x,y)=(—1,—1)1is the unique optimal solution of the original
problem and the following penalized problem

min  x +y+ p(x — )
st —l<x<l
—1<y<l

for any p> 0. Therefore by the equivalence of the exact penalty and the partial
calmness (Proposition 3.3), the problem considered is partially calm.

6. SUFFICIENT OPTIMALITY CONDITIONS

In this section, we give sufficient optimality conditions for the following bilevel
programming problem:

(P) min Fl(x,y)
st.  xeX,yeargmin{f(x,y),yeY},

where X cR", Yo R™, F:R"*™ =R and f:R"*™—R are twice continuously dif-
ferentiable.
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;

Theorem 6.1: Let (x*,y*) be feasible Jor (P) which lies in the interior of X x Y. If
(x*,y*) satisfies the necessary condition of Kuhn-Tucker type, i.e., there exist ;1= 0,
a positive integer I, 1,20, 3.1_ A, =1, y,e S(x*) such that

0=V FO*y*) + p(Vo X, 3%) — L4V f(x%,3,) (17)

0=V, F(x* y*) + uV, f(x*, y*) (18)
and the matrix

62

IS F s Ny - li s Vi

3x, g2 LEOo )+ (] (5, y) Z fGe )]

is positive semidefinite for any xe R", ye R™ then (x*, y*) is an optimal solution to (P).
Proof: Take any x°c X and y°eS(x°). By Taylor’s theorem, we have

F(x°,y%) + #(f(xo,yo) = 2 A (x°, y,-)> — F(x*,y%) — u(f(X*, Y= LA, y}))

i

= [VF(X*,Y*) -~ N<Vf(x*, y¥) — Z AV f(x*,y) % {O}H [(x% %) — (x*, y*)]
62
+30(x% %) — (x*, y*)]~ IW[F (x,y)+ u(f ()= L A (x, yJ)]
[(xo;yo) - (X*:y*)]

where (%, §) = p(x°, y°) + (1 — p)(x*, y*), 0< p < 1. Since the first term on the right
hand side of the above equation is zero by virtue of (17) and (18) and the second term on
the right hand side is greater and equal to zero by assumption, we have

(x,y) = (%,5)

F(x% %) + u<f(x0, ¥O) = ¥ A SO, yf)> > F(x* yp*) — u(f(-\"ﬁ ¥ -3 /'-.-f(-\‘*-,\'i)>

i \ i

(19)
Since y,eS(x*), we have
f(X*!yi) = minf(X*x y) :f(X*s .V*)
yeY -~
Therefore, ’
FO* p*) =Y 4 f(x*y,)=0. (20)
Since

S ) = minf(x% y) = £(x°,10)
yet

and ;= 0, we have

P00 = 2 4 (x% 1)) <0 1)

!
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By virtue of (19), (20) and (21), we have
F(x, y°) = F(x%, y°) + u(f(x%, y°) = 2 4/ (x%, y)) = F(x*, y¥).

t

That is, (x*, y*) is an optimal solution for(P,). B

Theorem 6.2: Let (x*, y*)e X x Y be feasible for (P)which lies in the interiorof X x Y.
Suppose that S(x*) = {y*)isa singleton. If the necessary condition of Kuhn-Tucker type is
satisfied at (x*, y*), i.e.

0= VF(x* y*) (22)

and (8%/8(x, y)*)F(x*,y*) is positive definite for (x*,y*), then (x*, y*) is a strict local
minimum point of (P).

Proof: I (x*,y*)is not a strict local minimum point, there exists a sequence of
feasible points {x,, y,} converging to {x*, v*) such that for each k,

F(xp y) S F(X*,0%). (23)

Write each (x,, y,) in the form (x;, y,) = (x*,3%) + 8,5, where |s,] = 1 and J, >0 for each
k. Clearly, 8, >0 &, — 0 since S(x*) is a singleton and y,eS(x,) and the sequence {5},
being bounded, must have a convergent subsequence converging to some s*. For
convenience of notation, we assume that the sequence {s; is itself convergent to s*.
Now by Taylor’s theorem, we have
~3
. 9 - ¢- .~
F(x,, ) — F(x*,3%) = VF(x*,y*) 8,5, + 50 2t mF(xk, 71)Ss

where (%, 7,) = p(xp 1) H (1= p)(x* .y, 0<p< L By the first order condition (22)
and the assumption (23), we have

1, o, ¢&

152 _F(X,, 7.5 <

5 Sk 201 F(%, T)s <0
which yields a contradiction as k — o . Therefore (x*, *) is a strict local minimum point
of (P) and the proof of the theorem is complete. &

7. CONCLUSION AND FUTURE RESEARCH

In this paper, we have identified the difficulty in deriving optimality conditions for the
BLPP. We have shown that in general the usual constraint qualifications do not hold
for the equivalent single level problem SLPP and the right constraint qualification is
the (partial) calmness condition. Moreover, we have shown that the calmness condition
is satisfied automatically for any bilevel programming problem with linear lower level
problem and the minmax problem. We identify the uniformly weak sharp minimum as
a sufficient condition for the (partial) calmness. As a consequence, sufficient conditions
for calmness condition for the bilevel problem with quadratic lower level problem and
nondegenerate linear complementarity problem are given. Searching for sufficient
conditions for the calmness condition for the bilevel programming problem with more
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general lower level problem will be a subject of the future research. Sufficient conditions
for general constrained BLPP is also a subject of the future study.
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