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Abstract. A bilevel program is an optimization problem whose constraints involve the solution
set to another optimization problem parameterized by upper level variables. This paper studies
bilevel polynomial programs (BPPs), i.e., all the functions are polynomials. We reformulate BPPs
equivalently as semi-infinite polynomial programs (SIPPs), using Fritz John conditions and Jacobian
representations. Combining the exchange technique and Lasserre-type semidefinite relaxations, we
propose a numerical method for solving BPPs. For simple BPPs, we prove the convergence to
global optimal solutions. Numerical experiments are presented to show the efficiency of the proposed
algorithm.
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1. Introduction. We consider the following bilevel polynomial program (BPP):

(1.1) (P ) :

⎧⎪⎪⎨⎪⎪⎩
F ∗ := min

x∈Rn,y∈Rp
F (x, y)

s.t. Gi(x, y) ≥ 0, i = 1, . . . ,m1,

y ∈ S(x),

where F and all Gi are real polynomials in (x, y), and S(x) is the set of global
minimizers of the following lower level program, which is parameterized by x:

(1.2) min
z∈Rp

f(x, z) s.t. gj(x, z) ≥ 0, j = 1, . . . ,m2.

In (1.2), f and each gj are polynomials in (x, z). For convenience, denote by

Z(x) := {z ∈ R
p | gj(x, z) ≥ 0, j = 1, . . . ,m2}

the feasible set of (1.2). The inequalities Gi(x, y) ≥ 0 are called upper (or outer) level
constraints, while gj(x, z) ≥ 0 are called lower (or inner) level constraints. When
m1 = 0 (resp., m2 = 0), there are no upper (resp., lower) level constraints. Similarly,
F (x, y) is the upper level (or outer) objective, and f(x, z) is the lower level (or inner)
objective. Denote the set

(1.3) U :=
{

(x, y)
∣∣∣∣ Gi(x, y) ≥ 0 (i = 1, . . . ,m1),
gj(x, y) ≥ 0 (j = 1, . . . ,m2)

}
.
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BILEVEL POLYNOMIAL PROGRAMS 1729

Then the feasible set of (P ) is the intersection

(1.4) U ∩ {(x, y) : y ∈ S(x)}.
Throughout the paper, we assume that for all (x, y) ∈ U , S(x) �= ∅, and consequently
the feasible set of (P ) is nonempty. When the lower level feasible set Z(x) ≡ Z is
independent of x, we call the problem (P ) a simple bilevel polynomial program (SBPP).
The SBPP is not mathematically simple but actually quite challenging. SBPPs have
important applications in economics, e.g., the moral hazard model of the principal-
agent problem [24]. When the feasible set of the lower level program Z(x) depends on
x, the problem (P ) is called a general bilevel polynomial program (GBPP). GBPP is
also an effective modeling tool for many applications in various fields; see, e.g., [9, 12]
and the references therein.

1.1. Background. The bilevel program is a class of difficult optimization prob-
lems. Even for the case where all the functions are linear, the problem is NP-hard [4].
A general approach for solving bilevel programs is to transform them into single level
optimization problems. A commonly used technique is to replace the lower level pro-
gram by its Karush–Kuhn–Tucker (KKT) conditions. When the lower level program
involves inequality constraints, the reduced problem becomes a so-called mathemati-
cal program with equilibrium constraints (MPEC) [23, 31]. If the lower level program
is nonconvex, the optimal solution of a bilevel program may not even be a stationary
point of the reduced single level optimization problem by using the KKT conditions.
This was shown by a counterexample due to Mirrlees [24]. Moreover, even if the lower
level program is convex, it was shown in [10] that a local solution to the MPEC ob-
tained by replacing the lower level program by its KKT conditions may not be a local
solution to the original bilevel program. Recently, [1] proposed replacing the lower
level program with its Fritz John conditions instead of its KKT conditions. However,
it was shown in [11] that the same difficulties remain; i.e., solutions to the MPEC
obtained by replacing the lower level program by its Fritz John conditions may not
be the solutions to the original bilevel program.

An alternative approach for solving BPPs is to use the value function [32, 42],
which gives an equivalent reformulation. However, the optimal solution of the bilevel
program may not be a stationary point of the value function reformulation. To over-
come this difficulty, [43] proposed combining the KKT and the value function refor-
mulations. Over the past two decades, many numerical algorithms were proposed
for solving bilevel programs. However, most of them assume that the lower level
program is convex, with few exceptions [21, 25, 27, 32, 39, 40, 41]. In [25, 27], an
algorithm using the branch and bound in combination with the exchange technique
was proposed to find approximate global optimal solutions. Recently, the smoothing
techniques were used to find stationary points of the valued function or the combined
reformulation of simple bilevel programs [21, 39, 40, 41].

In general, it is quite difficult to find global minimizers of nonconvex optimization
problems. However, when the functions are polynomials, there exists much work on
computing global optimizers, by using Lasserre-type semidefinite relaxations [18]. We
refer the reader to [19, 20] for the recent work in this area. Recently, Jeyakumar
et al. [17] worked on SBPPs. When the lower level program (1.2) is convex for each
fixed x, they transformed (1.1) into a single level polynomial program, by using Fritz
John conditions and the multipliers to replace the lower level program, and globally
solving it by using Lasserre-type relaxations. When (1.2) is nonconvex for some x, by
approximating the value function of lower level programs by a sequence of polynomi-

D
ow

nl
oa

de
d 

08
/2

3/
17

 to
 1

42
.1

04
.2

00
.2

13
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1730 JIAWANG NIE, LI WANG, AND JANE J. YE

als, they propose reformulating (1.1) with approximate lower level programs by the
value function approach, and globally solving the resulting sequence of polynomial
programs by using Lasserre-type relaxations. The work [17] is very inspiring, because
polynomial optimization techniques were proposed to solve BPPs. In this paper, we
also use Lasserre-type semidefinite relaxations to solve BPPs, but we make differ-
ent reformulations by using Jacobian representations and the exchange technique in
semi-infinite programming.

1.2. From BPP to SIPP. A bilevel program can be reformulated as a semi-
infinite program (SIP). Thus, the classical methods (e.g., the exchange method [7, 16,
38]) for SIPs can be applied to solve bilevel programs. For convenience of introduc-
tion, at the moment, we consider SBPPs; i.e., the feasible set Z(x) ≡ Z in (1.2) is
independent of x.

Before reformulating BPPs as SIPs, we show the fact

(1.5) y ∈ S(x) ⇐⇒ y ∈ Z, H(x, y, z) ≥ 0 (∀ z ∈ Z),

where H(x, y, z) := f(x, z)− f(x, y). Clearly, the “⇒” direction is true. Let us prove
the reverse direction. Let v(x) denote the value function:

(1.6) v(x) := inf
z∈Z

f(x, z).

If (x, y) satisfies the right-hand side conditions in (1.5), then

inf
z∈Z

H(x, y, z) = v(x) − f(x, y) ≥ 0.

Since y ∈ Z, we have v(x) − f(x, y) ≤ 0. Combining these two inequalities, we get

v(x) = inf
z∈Z

f(x, z) = f(x, y)

and hence y ∈ S(x).
By the fact (1.5), the problem (P ) is equivalent to

(1.7) (P̃ ) :

⎧⎪⎨⎪⎩
F ∗ := min

x∈Rn, y∈Z
F (x, y)

s.t. Gi(x, y) ≥ 0, i = 1, . . . ,m1,
H(x, y, z) ≥ 0 ∀ z ∈ Z.

The problem (P̃ ) is a semi-infinite polynomial program (SIPP) if the set Z is infinite.
Hence, the exchange method can be used to solve (P̃ ). Suppose Zk is a finite grid of
Z. Replacing Z by Zk in (P̃ ), we get

(1.8) (P̃k) :

⎧⎪⎪⎨⎪⎪⎩
F ∗

k := min
x∈Rn, y∈Z

F (x, y)

s.t. Gi(x, y) ≥ 0, i = 1, . . . ,m1,

H(x, y, z) ≥ 0 ∀ z ∈ Zk.

The feasible set of (P̃k) contains that of (P̃ ). Hence,

F ∗
k ≤ F ∗.

Since Zk is a finite set, (P̃k) is a polynomial optimization problem. If, for some Zk,
we can get an optimizer (xk, yk) of (P̃k) such that

(1.9) v(xk) − f(xk, yk) ≥ 0,
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BILEVEL POLYNOMIAL PROGRAMS 1731

then yk ∈ S(xk) and (xk, yk) is feasible for (P̃ ). In such a case, (xk, yk) must be a
global optimizer of (P̃ ). Otherwise, if (1.9) fails to hold, then there exists zk ∈ Z
such that

f(xk, zk) − f(xk, yk) < 0.

For such a case, we can construct the new grid set as

Zk+1 := Zk ∪ {zk}

and then solve the new problem (P̃k+1) with the grid set Zk+1. Repeating this process,
we can get an algorithm for solving (P̃ ) approximately.

How does the above approach work in computational practice? Does it converge
to global optimizers? Each subproblem (P̃k) is a polynomial optimization problem,
which is generally nonconvex. Theoretically, it is NP-hard to solve polynomial opti-
mization globally. However, in practice, it can be solved successfully by Lasserre-type
semidefinite relaxations (cf. [18, 19]). Recently, it was shown in [30] that Lasserre-type
semidefinite relaxations are generally tight for solving polynomial optimization prob-
lems. About the convergence, we can see that {F ∗

k } is a sequence of monotonically
increasing lower bounds for the global optimal value F ∗, i.e.,

F ∗
1 ≤ · · · ≤ F ∗

k ≤ F ∗
k+1 ≤ · · · ≤ F ∗.

By a standard analysis for SIP (cf. [16]), one can expect the convergence F ∗
k → F ∗,

under some conditions. However, we would like to point out that the above exchange
process typically converges very slowly for solving BPPs. A major reason is that
the feasible set of (P̃k) is much larger than that of (P̃ ). Indeed, the dimension of
the feasible set of (P̃k) is typically larger than that of (P̃ ). This is because, for
every feasible (x, y) in (P̃ ), y must also satisfy optimality conditions for the lower
level program (1.2). In the meanwhile, the y in (P̃k) does not satisfy such optimality
conditions. Typically, for (P̃k) to approximate (P̃ ) reasonably well, the grid set Zk

should be very big. In practice, the above standard exchange method is not efficient
for solving BPPs.

1.3. Contributions. In this paper, we propose a computational method for
solving BPPs efficiently. First, we transform a BPP into an equivalent SIPP by using
Fritz John conditions and Jacobian representations. Then we propose a new algorithm
for solving BPPs by using the exchange technique and Lasserre-type semidefinite
relaxations.

For each (x, y) that is feasible for (1.1), y is a minimizer for the lower level program
(1.2) parameterized by x. If some constraint qualification conditions are satisfied, the
KKT conditions hold. If such qualification conditions fail to hold, the KKT conditions
might not be satisfied. However, the Fritz John conditions always hold for (1.2) (cf. [6,
section 3.5] and [5] for optimality conditions for convex programs without constraint
qualifications). So, we can add the Fritz John conditions to (P̃ ), while the problem
is not changed.

A disadvantage of using Fritz John conditions is the usage of multipliers, which
need to be considered as new variables. Typically, using multipliers will make the
polynomial program much harder to solve, because of new additional variables. To
overcome this difficulty, the technique in [29, section 2] can be applied to avoid the us-
age of multipliers. This technique is known as Jacobian representations for optimality
conditions.
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1732 JIAWANG NIE, LI WANG, AND JANE J. YE

The above observations motivate us to solve bilevel polynomial programs by com-
bining Fritz John conditions, Jacobian representations, Lasserre relaxations, and the
exchange technique. Our major results are as follows:

• Unlike some prior methods for solving BPPs, we do not assume the KKT
conditions hold for the lower level program (1.2). Instead, we use the Fritz
John conditions. This is because the KKT conditions may fail to hold for the
lower level program (1.2), while the Fritz John conditions always hold. By
using Jacobian representations, the usage of multipliers can be avoided. This
greatly improves the computational efficiency.

• For SBPPs, we propose an algorithm using Jacobian representations, Lasserre
relaxations, and the exchange technique. Its convergence to global minimizers
is proved. The numerical experiments show that it is efficient for solving
SBPPs.

• For GBPPs, we can apply the same algorithm, using Jacobian representations,
Lasserre relaxations, and the exchange technique. The numerical experiments
show that it works well for some GBPPs, while it is not theoretically guaran-
teed to get global optimizers. However, its convergence to global optimality
can be proved under some assumptions.

The paper is organized as follows: In section 2, we review some preliminaries
in polynomial optimization and Jacobian representations. In section 3, we propose a
method for solving SBPPs and prove its convergence. In section 4, we consider GBPPs
and show how the algorithm works. In section 5, we present numerical experiments
to demonstrate the efficiency of the proposed methods. In section 6, we offer some
conclusions and discussions about our method.

2. Preliminaries.

Notation. The symbol N (resp., R ,C) denotes the set of nonnegative integers
(resp., real numbers, complex numbers). For an integer n > 0, [n] denotes the set
{1, . . . , n}. For x := (x1, . . . , xn) and α := (α1, . . . , αn), denote the monomial

xα := xα1
1 · · ·xαn

n .

For a finite set T , |T | denotes its cardinality. The symbol R[x] := R[x1, . . . , xn]
denotes the ring of polynomials in x := (x1, . . . , xn) with real coefficients, whereas
R[x]k denotes its subspace of polynomials of degree at most k. For a polynomial
p ∈ R[x], define the set product

p · R[x] := {pq | q ∈ R[x]}.

It is the principal ideal generated by p. For a symmetric matrix W , W � 0 (resp.,
� 0) means that W is positive semidefinite (resp., definite). For a vector u ∈ Rn,
‖u‖ denotes the standard Euclidean norm. The gradient of a function f(x) is denoted
by ∇f(x). If f(x, z) is a function in both x and z, then ∇zf(x, z) denotes the
gradient with respect to z. For an optimization problem, argmin denotes the set of
its optimizers.

2.1. Polynomial optimization. An ideal I in R[x] is a subset of R[x] such that
I · R[x] ⊆ I and I + I ⊆ I. For a tuple p = (p1, . . . , pr) in R[x], I(p) denotes the
smallest ideal containing all pi, i.e.,

I(p) = p1 · R[x] + · · · + pr · R[x].
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The kth truncation of the ideal I(p), denoted by Ik(p), is the set

p1 · R[x]k−deg(p1) + · · · + pr · R[x]k−deg(pr).

For the polynomial tuple p, denote its real zero set by

V(p) := {v ∈ R
n | p(v) = 0}.

A polynomial σ ∈ R[x] is said to be a sum of squares (SOS) if σ = a2
1 + · · · + a2

k

for some a1, . . . , ak ∈ R[x]. The set of all SOS polynomials in x is denoted by Σ[x].
For a degree m, denote the truncation

Σ[x]m := Σ[x] ∩ R[x]m.

For a tuple q = (q1, . . . , qt), its quadratic module is the set

Q(q) := Σ[x] + q1 · Σ[x] + · · · + qt · Σ[x].

The kth truncation of Q(q) is the set

Σ[x]2k + q1 · Σ[x]d1 + · · · + qt · Σ[x]dt ,

where each di = 2k − deg(qi). For the tuple q, denote the basic semialgebraic set

S(q) := {v ∈ R
n | q(v) ≥ 0}.

For the polynomial tuples p and q as above, if f ∈ I(p) + Q(q), then clearly
f ≥ 0 on the set V(p) ∩ S(q). However, the reverse is not necessarily true. The sum
I(p) +Q(q) is said to be archimedean if there exists b ∈ I(p) +Q(q) such that S(b) =
{v ∈ Rn : b(v) ≥ 0} is a compact set in Rn. Putinar [33] proved that if a polynomial
f > 0 on V(p) ∩ S(q) and if I(p) + Q(q) is archimedean, then f ∈ I(p) + Q(q).
When f is only nonnegative (but not strictly positive) on V(p) ∩ S(q), we still have
f ∈ I(p) +Q(q), under some general conditions (cf. [30]).

Now, we review Lasserre-type semidefinite relaxations in polynomial optimiza-
tion. More details can be found in [18, 19, 20]. Consider the general polynomial
optimization problem

(2.1)

{
fmin := min

x∈Rn
f(x)

s.t. p(x) = 0, q(x) ≥ 0,

where f ∈ R[x] and p, q are tuples of polynomials. The feasible set of (2.1) is precisely
the intersection V(p) ∩ S(q). The Lasserre’s hierarchy of semidefinite relaxations for
solving (2.1) is (k = 1, 2, . . .)

(2.2)
{
fk := max γ

s.t. f − γ ∈ I2k(p) +Qk(q).

When the set I(p) +Q(q) is archimedean, Lasserre proved the convergence

fk → fmin as k → ∞.

If there exist k < ∞ such that fk = fmin, the Lasserre’s hierarchy is said to have
finite convergence. Under the archimedeanness and some standard conditions in opti-
mization known to be generic (i.e., linear independence constraint qualification, strict
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1734 JIAWANG NIE, LI WANG, AND JANE J. YE

complementarity and second order sufficiency conditions), the Lasserre’s hierarchy
has finite convergence. This was recently shown in [30]. On the other hand, there
exist special polynomial optimization problems for which Lasserre’s hierarchy fails to
have finite convergence. However, such special problems belong to a set of measure
zero in the space of input polynomials, as shown in [30]. Moreover, we can also get
global minimizers of (2.1) by using the flat extension or flat truncation condition
(cf. [28]). The optimization problem (2.2) can be solved as a semidefinite program, so
it can be solved by semidefinite program packages (e.g., SeDuMi [36], SDPT3 [37]). A
convenient and efficient software for using Lasserre relaxations is GloptiPoly 3 [15].

2.2. Jacobian representations. We consider the polynomial optimization
problem that is similar to the lower level program (1.2):

(2.3) min
z∈Rp

f(z) s.t. g1(z) ≥ 0, . . . , gm(z) ≥ 0,

where f, g1, . . . , gm ∈ R[z] := R[z1, . . . , zp]. Let Z be the feasible set of (2.3). For
z ∈ Z, let J(z) denote the index set of active constraining functions at z.

Suppose z∗ is an optimizer of (2.3). By the Fritz John condition (cf. [6, sec-
tion 3.3.5]), there exists (μ0, μ1, . . . , μm) �= 0 such that

(2.4) μ0∇f(z∗) −
m∑

i=1

μi∇gi(z∗) = 0, μigi(z∗) = 0 (i ∈ [m]).

A point like z∗ satisfying (2.4) is called a Fritz John point. If we only consider active
constraints, the above is then reduced to

(2.5) μ0∇f(z∗) −
∑

i∈J(z∗)

μi∇gi(z∗) = 0.

The condition (2.4) uses multipliers μ0, . . . , μm, which are often not known in advance.
If we consider them as new variables, then it would increase the number of variables
significantly. For the index set J = {i1, . . . , ik}, denote the matrix

B[J, z] :=
[∇f(z) ∇gi1(z) · · · ∇gik

(z)
]
.

Then condition (2.5) means that the matrix B[J(z∗), z∗] is rank deficient, i.e.,

rankB[J(z∗), z∗] ≤ |J(z∗)|.

The matrix B[J(z∗), z∗] depends on the active set J(z∗), which is typically unknown
in advance.

The technique in [29, section 2] can be applied to get explicit equations for Fritz
John points, without using multipliers μi. For a subset J = {i1, . . . , ik} ⊆ [m] with
cardinality |J | ≤ min{m, p− 1}, write its complement as Jc := [m]\J. Then

B[J, z] is rank deficient ⇐⇒ all (k + 1) × (k + 1) minors of B[J, z] are zeros.

There are totally
(

p
k+1

)
equations defined by such minors. However, this number

can be significantly reduced by using the method in [29, section 2]. The number of
equations needed to characterize B[J, z] as rank deficient can be reduced to

�(J) := p(k + 1) − (k + 1)2 + 1.
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It is much smaller than
(

p
k+1

)
. For cleanness of the paper, we do not repeat the

construction of these minimum number defining polynomials. Interested readers are
referred to [29, section 2] for details. List all the defining polynomials, which make
B[J, z] rank deficient, as

(2.6) ηJ
1 , . . . , η

J
�(J).

Consider the products of these polynomials with gj’s:

(2.7) ηJ
1 ·

(
Π

j∈Jc
gj

)
, . . . , ηJ

�(J) ·
(

Π
j∈Jc

gj

)
.

They are all polynomials in z. The active set J(z) is undetermined, unless z is
known. We consider all possible polynomials as in (2.7), for all J ⊆ [m], and collect
them together. For convenience of notation, denote all such polynomials as

(2.8) ψ1, . . . , ψL,

where the number

L =
∑

J⊆[m],|J|≤min{m,p−1}
�(J)

=
∑

0≤k≤min{m,p−1}

(
m

k

)(
p(k + 1) − (k + 1)2 + 1

)
.

When m, k are big, the number L would be very large. This is an unfavorable feature
of Jacobian representations.

We point out that the Fritz John points can be characterized by using the poly-
nomials ψ1, . . . , ψL. Define the set of all Fritz John points:

(2.9) KFJ :=

⎧⎨⎩z ∈ R
p

∣∣∣∣∣∣
∃(μ0, μ1, . . . , μm) �= 0, μigi(z) = 0 (i ∈ [m]),

μ0∇f(z) −
m∑

i=1
μi∇gi(z) = 0

⎫⎬⎭ .

Let W be the set of real zeros of polynomials ψj(z), i.e.,

(2.10) W = {z ∈ R
p | ψ1(z) = · · · = ψL(z) = 0}.

It is interesting to note that the sets KFJ and W are equal.

Lemma 2.1. For KFJ ,W as in (2.9)–(2.10), it holds that KFJ = W .

Proof. First, we prove that W ⊆ KFJ . Choose an arbitrary u ∈ W , and let
J(u) be the active set at u. If |J(u)| ≥ p, then the gradients ∇f(u) and ∇gj(u)
(j ∈ J(u)) must be linearly dependent, so u ∈ KFJ . Next, we suppose |J(u)| < p.
Note that gj(u) > 0 for all j ∈ J(u)c. By the construction, some of ψ1, . . . , ψL are
the polynomials as in (2.7),

η
J(u)
t ·

(
Π

j∈J(u)c
gj

)
.

Thus, ψ(u) = 0 implies that all the polynomials ηJ(u)
t vanish at u. By their definition,

we know the matrix B[J(u), u] does not have full column rank. This means that
u ∈ KFJ .

Second, we show that KFJ ⊆ W . Choose an arbitrary u ∈ KFJ .
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• Case I: J(u) = ∅. Then ∇f(u) = 0. The first column of matrices B[∅, u] is
zero, so all η∅

t and ψj vanishes at u and hence u ∈ W .
• Case II: J(u) �= ∅. Let I ⊆ [m] be an arbitrary index set with |I| ≤ min{m, p−

1}. If J(u) �⊆ I, then at least one j ∈ Ic belongs to J(u). Thus, at least one
j ∈ Ic satisfies gj(u) = 0, so all the polynomials

ηI
t ·

(
Π

j∈Ic
gj

)
vanish at u. If J(u) ⊆ I, then μigi(u) = 0 implies that μi = 0 for all i ∈ Ic.
By definition of KFJ , the matrix B[I, u] does not have full column rank. So,
the minors ηI

i of B[I, u] vanish at u. By the construction of ψi, we know all
ψi vanish at u, so u ∈ W .

The proof is completed by combining the above two cases.

3. Simple bilevel polynomial programs. In this section, we study simple
bilevel polynomial programs (SBPPs) and give an algorithm for computing global
optimizers. For SBPPs as in (1.1), the feasible set Z(x) for the lower level program
(1.2) is independent of x. Assume that Z(x) is constantly the semialgebraic set

(3.1) Z := {z ∈ R
p | g1(z) ≥ 0, . . . , gm2(z) ≥ 0}

for given polynomials g1, . . . , gm2 in z := (z1, . . . , zp). For each pair (x, y) that is
feasible in (1.1), y is an optimizer for (1.2), which now becomes

(3.2) min
z∈Rp

f(x, z) s.t. g1(z) ≥ 0, . . . , gm2(z) ≥ 0.

Note that the inner objective f still depends on x. So, y must be a Fritz John point
of (3.2); i.e., there exists (μ0, μ1, . . . , μm2) �= 0 satisfying

μ0∇zf(x, y) −
∑

j∈[m2]

μj∇zgj(y) = 0, μjgj(y) = 0 (j ∈ [m2]).

Let KFJ(x) denote the set of all Fritz John points of (3.2). The set KFJ(x) can
be characterized by Jacobian representations. Let ψ1, . . . , ψL be the polynomials
constructed as in (2.8). Note that each ψj is now a polynomial in (x, z), because the
objective of (3.2) depends on x. Thus, each (x, y) feasible for (1.1) satisfies

ψ1(x, y) = · · · = ψL(x, y) = 0.

For convenience of notation, denote the polynomial tuples

(3.3) ξ :=
(
G1, . . . , Gm1 , g1, . . . , gm2

)
, ψ :=

(
ψ1, . . . , ψL

)
.

We call ψ(x, y) = 0 a Jacobian equation. Then the SBPP as in (1.1) is equivalent to
the following SIPP:

(3.4)

⎧⎪⎨⎪⎩
F ∗ := min

x∈Rn,y∈Rp
F (x, y)

s.t. ψ(x, y) = 0, ξ(x, y) ≥ 0,
H(x, y, z) ≥ 0 ∀ z ∈ Z.

In the above, H(x, y, z) is defined as in (1.5).
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3.1. A semidefinite algorithm for SBPP. We have seen that the SBPP (1.1)
is equivalent to (3.4), which is an SIPP. So, we can apply the exchange method to
solve it. The basic idea of “exchange” is that we replace Z by a finite grid set Zk

in (3.4), and then solve it for a global minimizer (xk, yk) by Lasserre relaxations.
If (xk, yk) is feasible for (1.1), we stop; otherwise, we compute global minimizers of
H(xk, yk, z) and add them to Zk. Repeat this process until the convergence condition
is met. We call (x∗, y∗) a global minimizer of (1.1), up to a tolerance parameter ε > 0,
if (x∗, y∗) is a global minimizer of the following approximate SIPP:

(3.5)

⎧⎪⎨⎪⎩
F ∗

ε := min
x∈Rn,y∈Rp

F (x, y)

s.t. ψ(x, y) = 0, ξ(x, y) ≥ 0,
H(x, y, z) ≥ −ε ∀ z ∈ Z.

Summarizing the above, we get the following algorithm.

Algorithm 3.1 (a semidefinite relaxation algorithm for SBPP).

Input: Polynomials F , f , G1, . . . , Gm1 , g1, . . . , gm2 for the SBPP as in (1.1), a
tolerance parameter ε ≥ 0, and a maximum number kmax of iterations.

Output: The set X ∗ of global minimizers of (1.1), up to the tolerance ε.

Step 1. Let Z0 = ∅, X ∗ = ∅, and k = 0.
Step 2. Apply Lasserre relaxations to solve

(3.6) (Pk) :

⎧⎪⎨⎪⎩
F ∗

k := min
x∈Rn,y∈Rp

F (x, y)

s.t. ψ(x, y) = 0, ξ(x, y) ≥ 0,
H(x, y, z) ≥ 0 (∀ z ∈ Zk),

and get the set Sk = {(xk
1 , y

k
1 ), . . . , (xk

rk
, yk

rk
)} of its global minimizers.

Step 3. For each i = 1, . . . , rk, do the following:
(a) Apply Lasserre relaxations to solve

(3.7) (Qk
i ) :

⎧⎪⎨⎪⎩
vk

i := min
z∈Rp

H(xk
i , y

k
i , z)

s.t. ψ(xk
i , z) = 0,

g1(z) ≥ 0, . . . , gm2(z) ≥ 0,

and get the set T k
i =

{
zk

i,j : j = 1, . . . , tki
}

of its global minimizers.
(b) If vk

i ≥ −ε, then update X ∗ := X ∗ ∪ {(xk
i , y

k
i )}.

Step 4. If X ∗ �= ∅ or k > kmax, stop; otherwise, update Zk to Zk+1 as

(3.8) Zk+1 := Zk ∪ T k
1 ∪ · · · ∪ T k

rk
.

Let k := k + 1 and go to Step 2.

For the exchange method to solve the SIPP (3.4) successfully, the two subprob-
lems (3.6) and (3.7) need to be solved globally at each iteration. This can be done by
Lasserre’s hierarchy of semidefinite relaxations (cf. section 2.1).

(A) For solving (3.6) by Lasserre’s hierarchy, we get a sequence of monotonically
increasing lower bounds for F ∗

k , say, {ρ�}∞
�=1, that is,

ρ1 ≤ · · · ≤ ρ� ≤ · · · ≤ F ∗
k .
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Here, � is a relaxation order. If for some value of � we get a feasible point
(x̂, ŷ) for (3.6) such that F (x̂, ŷ) = ρ�, then we must have

(3.9) F (x̂, ŷ) = F ∗
k = ρ�

and know (x̂, ŷ) is a global minimizer. This certifies that Lasserre’s relax-
ation of order � is exact and (3.6) is solved globally; i.e., Lasserre’s hierarchy
has finite convergence. As recently shown in [30], Lasserre’s hierarchy has
finite convergence when the archimedeanness and some standard conditions
well known in optimization to be generic (i.e., linear independence constraint
qualification, strict complementarity, and second order sufficiency conditions)
hold.

(B) For a given polynomial optimization problem, there exist a sufficient (and
almost necessary) condition for detecting whether or not Lasserre’s hierarchy
has finite convergence. The condition is flat truncation, proposed in [28]. It
was proved in [28] that Lasserre’s hierarchy has finite convergence if the flat
truncation condition is satisfied. When the flat truncation condition holds, we
can also get the point (x̂, ŷ) in (3.9). In all of our numerical examples, the flat
truncation condition is satisfied, so we know that Lasserre relaxations solved
them exactly. There exist special optimization problems for which Lasserre
relaxations are not exact (see, e.g., [19, Chapter 5]). Even for the worst-case
scenario in which Lasserre’s hierarchy fails to have finite convergence, flat
truncation is still the right condition for checking asymptotic convergence.
This is proved in [28, section 3].

(C) In computational practice, semidefinite programs cannot be solved exactly,
because round-off errors always exist in computers. Therefore, if F (x̂, ŷ) ≈ ρ�,
it is reasonable to claim that (3.6) is solved globally. This numerical issue is
a common feature of most computational methods.

(D) For the same reasons as above, the subproblem (3.7) can also be solved glob-
ally by Lasserre’s relaxations. Moreover, (3.7) uses the equation ψ(xk

i , z) = 0,
obtained from Jacobian representation. As shown in [29], Lasserre’s hierarchy
of relaxations, in combination with Jacobian representations, always has fi-
nite convergence, under some nonsingularity conditions. This result has been
improved in [13, Theorem 3.9] under weaker conditions. Flat truncation can
be used to detect the convergence (cf. [28, section 4.2]).

(E) For all ε1 > ε2 > 0, it is easy to see that F ∗
ε1 ≤ F ∗

ε2 ≤ F ∗, and hence the
feasible region and the optimal value of the bilevel problems are monotone.
Indeed, we can prove limε→0+ F ∗

ε = F ∗ and the continuity of the optimal
solutions; see [21, Theorem 4.1] for the result and a detailed proof. However,
we should point out that if ε > 0 is not small enough, then the solution of the
approximate bilevel program may be very different from that for the original
bilevel program. We refer the reader to [25, Example 4.1].

(F) In Step 3 of Algorithm 3.1, the value of vk
i is a measure for the feasibility of

(xk
i , y

k
i ) in (3.4). This is because (xk

i , y
k
i ) is a feasible point for (3.4) if and

only if vk
i ≥ 0. By using the exchange method, the subproblem (3.6) is only

an approximation for (3.4), so typically we have vk
i < 0 if (xk

i , y
k
i ) is infeasible

for (3.4). The closer vk
i is to zero, the better (3.6) approximates (3.4).

3.2. Two features of the algorithm. As in the introduction, we do not apply
the exchange method directly to (1.7), but instead to (3.4). Both (1.7) and (3.4)
are SIPPs that are equivalent to the SBPP (1.1). As the numerical experiments
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will show, the SIPP (3.4) is much easier to solve by the exchange method. This is
because, the Jacobian equation ψ(x, y) = 0 in (3.4) makes it much easier for (3.6)
to approximate (3.4) accurately. Typically, for a finite grid set Zk of Z, the feasible
sets of (3.4) and (3.6) have the same dimension. However, the feasible set of (1.7)
has smaller dimension than that of (1.8). Thus, it is usually very difficult for (1.8)
to approximate (1.7) accurately by choosing a finite set Zk. In contrast, it is often
much easier for (3.6) to approximate (3.4) accurately. We illustrate this fact by the
following example.

Example 3.2 (see [26, Example 3.19]). Consider the SBPP

(3.10)

⎧⎪⎪⎨⎪⎪⎩
min

x∈R,y∈R

F (x, y) := xy − y + 1
2y

2

s.t. 1 − x2 ≥ 0, 1 − y2 ≥ 0,
y ∈ S(x) := argmin

1−z2≥0
, f(x, z) := −xz2 + 1

2z
4.

Since f(x, z) = 1
2 (z2 − x)2 − 1

2x
2, one can see that

S(x) =

{
0, x ∈ [−1, 0),

± √
x, x ∈ [0, 1].

Therefore, the outer objective F (x, y) can be expressed as

F (x, y) =

⎧⎨⎩
0, x ∈ [−1, 0),
1
2
x± (x− 1)

√
x, x ∈ [0, 1].

So, the optimal solution and the optimal value of (3.10) are (a =
√

13−1
6 )

(x∗, y∗) = (a2, a) ≈ (0.1886, 0.4343), F ∗ =
1
2
a2 + a3 − a ≈ −0.2581.

If Algorithm 3.1 is applied without using the Jacobian equation ψ(x, y) = 0, we get the
computational results shown in Table 1. Problem (3.10) cannot be solved reasonably
well. In contrast, if we apply Algorithm 3.1 with the Jacobian equation ψ(x, y) = 0,
then (3.10) is solved very well. The computational results are shown in Table 2. It
takes only two iterations for the algorithm to converge.

Table 1

Computational results without ψ(x, y) = 0.

Iter k (xk
i , y

k
i ) zk

i,j F ∗
k vk

i

0 (−1, 1) 4.098e-13 −1.5000 −1.5000
1 (0.1505, 0.5486) ±0.3879 −0.3156 −0.0113
2 (0.0752, 0.3879) ±0.2743 −0.2835 −0.0028
3 (0.2088, 0.5179) ±0.4569 −0.2754 −0.0018
4 cannot be solved ... ... ...

For the lower level program (1.2), the KKT conditions may fail to hold. In such
a case, the classical methods which replace (1.2) by the KKT conditions do not work
at all. However, such problems can also be solved efficiently by Algorithm 3.1. The
following are two such examples.
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Table 2

Computational results with ψ(x, y) = 0

Iter k (xk
i , y

k
i ) zk

i,j F ∗
k vk

i

0 (−1, 1) 3.283e-21 −1.5000 −1.5000
1 (0.1886,0.4342) ±0.4342 −0.2581 −3.625e-12

Example 3.3 (see [10, Example 2.4]). Consider the SBPP

(3.11) F ∗ := min
x∈R,y∈R

(x− 1)2 + y2 s.t. y ∈ S(x) := argmin
z∈Z:={z∈R|z2≤0}

x2z.

It is easy to see that the global minimizer of this problem is (x∗, y∗) = (1, 0). The
set Z = {0} is convex. By using the multiplier variable λ, we get a single level
optimization problem:⎧⎨⎩r

∗ := min
x∈R,y∈R,λ∈R

(x− 1)2 + y2

s.t. x2 + 2λy = 0, λ ≥ 0, y2 ≤ 0, λy2 = 0.

The feasible points of this problem are (0, 0, λ) with λ ≥ 0. We have r∗ = 1 > F ∗.
The KKT reformulation approach fails in this example, since y∗ ∈ S(x∗) is not a KKT
point. We solve the SBPP problem (3.11) by Algorithm 3.1. The Jacobian equation
is ψ(x, y) = x2y2 = 0, and we reformulate the problem as⎧⎪⎪⎨⎪⎪⎩

s∗ := min
x∈R,y∈R

(x− 1)2 + y2

s.t. x2(z − y) ≥ 0 ∀z ∈ Z,

ψ(x, y) = x2y2 = 0.

This problem is not an SIPP actually, since the set Z only has one feasible point. At
the initial step, we find its optimal solution (x∗, y∗) = (1, 0), and it is easy to check
that minz∈Z H(x∗, y∗, z) = 0, which certifies that it is the global minimizer of the
SBPP problem (3.11).

Example 3.4. Consider the SBPP

(3.12)

⎧⎪⎪⎨⎪⎪⎩
min

x∈R, y∈R2
F (x, y) := x+ y1 + y2

s.t. x− 2 ≥ 0, 3 − x ≥ 0,
y ∈ S(x) := argmin

z∈Z
, f(x, z) := x(z1 + z2),

where set Z is defined by the inequalities

g1(z) := z2
1 − z2

2 − (z2
1 + z2

2)
2 ≥ 0, g2(z) := z1 ≥ 0.

For all x ∈ [2, 3], one can check that S(x) = {(0, 0)}. Clearly, the global minimizer
of (3.12) is (x∗, y∗) = (2, 0, 0), and the optimal value F ∗ = 2. At z∗ = (0, 0),

∇zf(x, z∗) =
[
x
x

]
, ∇zg1(z∗) =

[
0
0

]
, ∇zg2(z∗) =

[
1
0

]
.

The KKT condition does not hold for the lower level program, since ∇zf(x, z∗) is not
a linear combination of ∇zg1(z∗) and ∇zg2(z∗). By [30, Proposition 3.4], Lasserre
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relaxations in (2.2) do not have finite convergence for solving the lower level program.
One can check that

KFJ(x) = {(0, 0), (0.8990, 0.2409)} 1

for all feasible x.
By Jacobian representation of KFJ(x), we get

ψ(x, z) =
(
xg1(z)g2(z), −xz1(z1 + z2 + 2(z2 − z1)(z2

1 + z2
2)), −xg1(z)

)
.

Next, we apply Algorithm 3.1 to solve (3.12). Indeed, for k = 0, Z0 = ∅, we get

(x0
1, y

0
1) ≈ (2.0000, 0.0000, 0.0000),

which is the true global minimizer. We also get

z0
1 ≈ (4.6320,−4.6330)× 10−5, v0

1 ≈ −5.2510 × 10−8.

For a small value of ε (e.g., 10−6), Algorithm 3.1 terminates successfully with the
global minimizer of (3.12).

3.3. Convergence analysis. We study the convergence properties of Algorithm
3.1. For theoretical analysis, we are mostly interested in its performance when the
tolerance parameter ε = 0 or the maximum iteration number kmax = ∞.

Theorem 3.5. For the SBPP as in (1.1), assume the lower level program is as
in (3.2). Suppose the subproblems (Pk) and each (Qk

i ) are solved globally by Lasserre
relaxations.

(i) Assume ε = 0. If Algorithm 3.1 stops for some k < kmax, then each (x∗, y∗) ∈
X ∗ is a global minimizer of (1.1).

(ii) Assume ε = 0, kmax = ∞, and the union ∪k≥0Zk is bounded. Suppose
Algorithm 3.1 does not stop and each Sk �= ∅ is finite. Let (x∗, y∗) be an
arbitrary accumulation point of the set ∪k≥0Sk. If the value function v(x), as
in (1.6), is continuous at x∗, then (x∗, y∗) is a global minimizer of the SBPP
problem (1.1).

(iii) Assume kmax = ∞, the union ∪k≥0Zk is bounded, and the set Ξ = {(x, y) :
ψ(x, y) = 0, ξ(x, y) ≥ 0} is compact. Let Ξ1 = {x : ∃y, (x, y) ∈ Ξ}, which
is the projection of Ξ onto the x-space. Suppose v(x) is continuous on Ξ1.
Then, for all ε > 0, Algorithm 3.1 must terminate within finitely many steps,
and each (x̄, ȳ) ∈ X ∗ is a global minimizer of the approximate SIPP (3.5).

Proof. (i) The SBPP (1.1) is equivalent to (3.4). Note that each optimal value
F ∗

k ≤ F ∗ and the sequence {F ∗
k } is monotonically increasing. If Algorithm 3.1 stops

at the kth iteration, then each (x∗, y∗) ∈ X ∗ is feasible for (3.4), and also feasible for
(1.1), so it holds that

F ∗ ≥ F ∗
k = F (x∗, y∗) ≥ F ∗.

This implies that (x∗, y∗) is a global optimizer of problem (1.1).
(ii) Suppose Algorithm 3.1 does not stop and each Sk �= ∅ is finite. For each

accumulation point (x∗, y∗) of the union ∪k≥0Sk, there exists a sequence {k�} of
integers such that k� → ∞ as � → ∞ and

(xk� , yk�) → (x∗, y∗), where each (xk� , yk�) ∈ Sk�
.

1They are the solutions of the equations g1(z) = 0, z1 + z2 + 2(z2 − z1)(z21 + z22) = 0.
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Since the feasible set of problem (Pk�
) contains the one for problem (1.1), we have

F ∗
k�

= F (xk� , yk�) ≤ F ∗, and hence F (x∗, y∗) ≤ F ∗ by the continuity of F . To
show the opposite inequality it suffices to show that (x∗, y∗) is feasible for problem
(1.1). Recall that the function ξ is defined as in (3.3). Since ξ(xk� , yk�) ≥ 0 and
ψ(xk� , yk�) = 0, by the continuity of the mappings ξ, ψ, we have ξ(x∗, y∗) ≥ 0 and
ψ(x∗, y∗) = 0. Define the function

(3.13) φ(x, y) := inf
z∈Z

H(x, y, z).

Clearly, φ(x, y) = v(x) − f(x, y), and φ(x∗, y∗) = 0 if and only if (x∗, y∗) is
a feasible point for (1.1). By the definition of v(x) as in (1.6) and that v(x) is
continuous at x∗, we always have φ(x∗, y∗) ≤ 0. To prove φ(x∗, y∗) = 0, it remains to
show φ(x∗, y∗) ≥ 0. For all k′ and for all k� ≥ k′, the point (xk� , yk�) is feasible for
the subproblem (Pk′ ), so

H(xk� , yk� , z) ≥ 0 ∀ z ∈ Zk′ .

Letting � → ∞, we then get

(3.14) H(x∗, y∗, z) ≥ 0 ∀ z ∈ Zk′ .

The above is true for all k′. In Algorithm 3.1, for each k�, there exists zk� ∈ T k�
i , for

some i, such that
φ(xk� , yk�) = H(xk� , yk� , zk�).

Since zk� ∈ Zk�+1, by (3.14), we know

H(x∗, y∗, zk�) ≥ 0.

Therefore, it holds that

(3.15)
φ(x∗, y∗) = φ(xk� , yk�) + φ(x∗, y∗) − φ(xk� , yk�)

≥ [H(xk� , yk� , zk�) −H(x∗, y∗, zk�)]
+ [φ(x∗, y∗) − φ(xk� , yk�)].

Since zk� belongs to the bounded set ∪k≥0Zk, there exists a subsequence zk�,j such
that zk�,j → z∗ ∈ Z. The polynomial H(x, y, z) is continuous at (x∗, y∗, z∗). Since
v(x) is continuous at x∗, φ(x, y) = v(x)−f(x, y) is also continuous at (x∗, y∗). Letting
� → ∞, we get φ(x∗, y∗) ≥ 0. Thus, (x∗, y∗) is feasible for (3.4) and so F (x∗, y∗) ≥ F ∗.
Earlier we proved F (x∗, y∗) ≤ F ∗, so (x∗, y∗) is a global optimizer of (3.4), i.e., (x∗, y∗)
is a global minimizer of the SBPP problem (1.1).

(iii) Suppose otherwise, that the algorithm does not stop within finitely many
steps. Then there exist a sequence {(xk, yk, zk)} such that (xk, yk) ∈ Sk, zk ∈ ∪rk

i=1T
k
i ,

H(xk, yk, zk) < −ε
for all k. Note that (xk, yk) ∈ Ξ and zk ∈ Zk+1. By the assumption that Ξ is compact
and ∪k≥0Zk is bounded, the sequence {(xk, yk, zk)} has a convergent subsequence, say,

(xk� , yk� , zk�) → (x∗, y∗, z∗) as � → ∞.

So, it holds that (x∗, y∗) ∈ Ξ, z∗ ∈ Z, and H(x∗, y∗, z∗) ≤ −ε. Since Ξ is compact,
the projection set Ξ1 is also compact, and hence x∗ ∈ Ξ1. By the assumption, we
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know v(x) is continuous at x∗. Similar to the proof in (ii), we have φ(x∗, y∗) = 0;
then (x∗, y∗) is a feasible point for (1.1), and we will get

H(x∗, y∗, z∗) = f(x∗, z∗) − f(x∗, y∗) ≥ 0.

However, this contradicts that H(x∗, y∗, z∗) ≤ −ε. Therefore, Algorithm 3.1 must
terminate within finitely many steps.

Now suppose Algorithm 3.1 terminates within finitely many steps at (x̄, ȳ) ∈ X ∗

with ε > 0. Then (x̄, ȳ) must be a feasible solution to the approximate SIPP (3.5).
Hence it is obvious that (x̄, ȳ) is a global minimizer of (3.5).

In Theorem 3.5, we assumed that the subproblems (Pk) and (Qk
i ) can be solved

globally by Lasserre relaxations. This is a reasonably assumption. Please see the
remarks (A)–(D) after Algorithm 3.1. In items (ii)-(iii), the value function v(x) is
assumed to be continuous at certain points. This can be satisfied under some condi-
tions. The restricted inf-compactness (RIC) is such a condition. The value function
v(x) is said to have RIC at x∗ if v(x∗) is finite and there exist a compact set Ω and
a positive number ε0, such that for all ‖x − x∗‖ < ε0 with v(x) < v(x∗) + ε0, there
exists z ∈ S(x) ∩ Ω. For instance, if the set Z is compact, or the lower level objective
f(x∗, z) is weakly coercive in z with respect to set Z, i.e.,

lim
z∈Z,‖z‖→∞

f(x∗, z) = ∞,

then v(x) has RIC at x∗; see, e.g., [8, section 6.5.1]. Note that the union ∪k≥0Zk is
contained in Z. So, if Z is compact, then ∪k≥0Zk is bounded.

Proposition 3.6. For the SBPP problem (1.1), assume the lower level program
is as in (3.2). If the value function v(x) has RIC at x∗, then v(x) is continuous at
x∗.

Proof. On the one hand, since the lower level constraint is independent of x, the
value function v(x) is always upper semicontinuous [2, Theorem 4.22 (1)]. On the
other hand, since the RIC holds, it follows from [8, p. 246] (or see the proof of [14,
Theorem 3.9]) that v(x) is lower semicontinuous. Therefore v(x) is continuous at
x∗.

4. General bilevel polynomial programs. In this section, we study GBPPs
as in (1.1). For GBPPs, the feasible set Z(x) of the lower level program (1.2) varies
as x changes; i.e., the constraining polynomials gj(x, z) depends on x.

For each pair (x, y) that is feasible for (1.1), y is an optimizer for the lower level
program (1.2) parameterized by x, so y must be a Fritz John point of (1.2); i.e., there
exists (μ0, μ1, . . . , μm2) �= 0 satisfying

μ0∇zf(x, y) −
∑

j∈[m2]

μj∇zgj(x, y) = 0, μjgj(x, y) = 0 (j ∈ [m2]).

For convenience, we still use KFJ(x) to denote the set of Fritz John points of (1.2) at
x. The set KFJ(x) consists of common zeros of some polynomials. As in (2.3), choose
the polynomials (f(z), g1(z), . . . , gm(z)) to be (f(x, z), g1(x, z), . . . , gm2(x, z)), whose
coefficients depend on x. Then construct ψ1, . . . , ψL in the same way as in (2.8).
Each ψj is also a polynomial in (x, z). Thus, every (x, y) feasible in (1.1) satisfies
ψj(x, y) = 0 for all j. For convenience of notation, we still denote the polynomial
tuples ξ, ψ as in (3.3).

D
ow

nl
oa

de
d 

08
/2

3/
17

 to
 1

42
.1

04
.2

00
.2

13
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1744 JIAWANG NIE, LI WANG, AND JANE J. YE

We have seen that (1.1) is equivalent to the generalized SIPP (H(x, y, z) is as in
(1.5))

(4.1)

⎧⎪⎨⎪⎩
F ∗ := min

x∈Rn, y∈Rp
F (x, y)

s.t. ψ(x, y) = 0, ξ(x, y) ≥ 0,
H(x, y, z) ≥ 0 ∀ z ∈ Z(x).

Note that the constraintH(x, y, z) ≥ 0 in (4.1) is required for z ∈ Z(x), which depends
on x. Algorithm 3.1 can also be applied to solve (4.1). We first give an example to
show how it works.

Example 4.1 (see [26, Example 3.23]). Consider the GBPP

(4.2)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
min

x,y∈[−1,1]
x2

s.t. 1 + x− 9x2 − y ≤ 0,

y ∈ argmin
z∈[−1,1]

{z s.t. z2(x − 0.5) ≤ 0}.

By simple calculations, one can show that

Z(x) =

{
{0}, x ∈ (0.5, 1],
[−1, 1], x ∈ [−1, 0.5],

S(x) =

{
{0}, x ∈ (0.5, 1],
{−1}, x ∈ [−1, 0.5].

The set U = {(x, y) ∈ [−1, 1]2 : 1 + x − 9x2 − y ≤ 0, y2(x − 0.5) ≤ 0}. The feasible
set of (4.2) is

F :=
(

{(x, 0) : x ∈ (0.5, 1]} ∪ {(x,−1) : x ∈ [−1, 0.5]}
)

∩ U .

One can show that the global minimizer and the optimal values are

(x∗, y∗) =

(
1 − √

73
18

,−1

)
≈ (−0.4191,−1), F ∗ =

(
1 − √

73
18

)2

≈ 0.1757.

By the Jacobian representation of Fritz John points, we get the polynomial

ψ(x, y) = (x− 0.5)y2(y2 − 1).

We apply Algorithm 3.1 to solve (4.2). The computational results are reported in
Table 3. As one can see, Algorithm 3.1 takes two iterations to solve (4.2) successfully.

Table 3

Results of Algorithm 3.1 for solving (4.2).

Iter k (xk
i , y

k
i ) zk

i,j F ∗
k vk

i

0 (0.0000, 1.0000) −1.0000 0.0000 −2.0000
1 (−0.4191,−1.0000) −1.0000 0.1757 −2.4e-11

However, we would like to point out that Algorithm 3.1 might not solve GBPPs
globally. The following is such an example.
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Example 4.2 (see [26, Example 5.2]). Consider the GBPP

(4.3)

{
min

x∈R,y∈R

(x− 3)2 + (y − 2)2

s.t. 0 ≤ x ≤ 8, y ∈ S(x),

where S(x) is the set of minimizers of the optimization problem⎧⎪⎨⎪⎩
min
z∈R

(z − 5)2

s.t. 0 ≤ z ≤ 6, −2x+ z − 1 ≤ 0,
x− 2z + 2 ≤ 0, x+ 2z − 14 ≤ 0.

It can be shown that

S(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

{1 + 2x}, x ∈ [0, 2],
{5}, x ∈ (2, 4],{

7 − x

2

}
, x ∈ (4, 6],

∅, x ∈ (6, 8].

The feasible set of (4.3) is thus the set

F := {(x, y) | x ∈ [0, 6], y ∈ S(x)}.
It consists of three connected line segments. One can easily check that the global
optimizer and the optimal values are

(x∗, y∗) = (1, 3), F ∗ = 5.

The polynomial ψ in the Jacobian representation is

ψ(x, y) = (−2x+ y − 1)(x− 2y + 2)(x+ 2y − 14)y(y − 6)(y − 5).

We apply Algorithm 3.1 to solve (4.3). The computational results are reported in Ta-
ble 4. For ε = 10−6, Algorithm 3.1 stops at k = 1 and returns the point (2.9972, 5.00),
which is not a global minimizer.

Table 4

Results of Algorithm 3.1 for solving (4.3).

Iter k (xk
i , y

k
i ) zk

i,j F ∗
k vk

i

0 (2.7996, 2.3998) 5.0021 0.2000 −6.7611
1 (2.9972, 5.0000) 5.0021 9.0001 4.41e-6

However, it is interesting to note that the computed solution (2.9972, 5.0000) ≈
(3, 5), a local optimizer of problem (4.3).

Why does Algorithm 3.1 fail to find a global minimizer in Example 4.2? By
adding z0 to the discrete subset Z1, the feasible set of (P1) becomes

{x ∈ X, y ∈ Z(x)} ∩ {ψ(x, y) = 0} ∩ {|y − 5| ≤ 0.0021}.
It does not include the unique global optimizer (x∗, y∗) = (1, 3). In other words, the
reason is that H(x∗, y∗, z0) ≥ 0 fails to hold, and hence by adding z0, the true optimal
solution (x∗, y∗) is not in the feasible region of problem (P1).
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From the above example, we observe that the difficulty for solving GBPPs globally
comes from the dependence of the lower level feasible set on x. For a global optimizer
(x∗, y∗), it is possible that H(x∗, y∗, zk

i,j) �≥ 0 for some zk
i,j at some step; i.e., (x∗, y∗)

may fail to satisfy the newly added constraint in (Pk+1): H(x, y, zk
i,j) ≥ 0. In other

words, (x∗, y∗) may not be feasible for the subproblem (Pk+1). Let Xk be the feasible
set of problem (Pk). Since Zk ⊆ Zk+1, we have Xk+1 ⊆ Xk, and (x∗, y∗) is not
feasible for (P�) for all � ≥ k+1. In such cases, Algorithm 3.1 will fail to find a global
optimizer. However, this will not happen for SBPPs, since Z(x) ≡ Z for all x. For all
z ∈ Z, we have H(x∗, y∗, z) ≥ 0; i.e., (x∗, y∗) is feasible for all subproblems (Pk). This
is why Algorithm 3.1 has convergence to global optimal solutions for solving SBPPs.
However, under some further conditions, Algorithm 3.1 can solve GBPPs globally.

Theorem 4.3. For the GBPP as in (1.1), assume that the lower level program
is as in (1.2) and the minimum value F ∗ is achievable at a point (x̄, ȳ) such that
H(x̄, ȳ, z) ≥ 0 for all z ∈ Zk and for all k. Suppose (Pk) and (Qk

i ) are solved globally
by Lasserre relaxations.

(i) Assume ε = 0. If Algorithm 3.1 stops for some k < kmax, then each (x∗, y∗) ∈
X ∗ is a global minimizer of the GBPP problem (1.1).

(ii) Assume ε = 0, kmax = ∞, and the union ∪k≥0Zk is bounded. Suppose
Algorithm 3.1 does not stop and each Sk �= ∅ is finite. Let (x∗, y∗) be an
arbitrary accumulation point of the set ∪k≥0Sk. If the value function v(x),
defined as in (1.6), is continuous at x∗, then (x∗, y∗) is a global minimizer of
the GBPP problem (1.1).

(iii) Assume kmax = ∞, the union ∪k≥0Zk is bounded, and the set Ξ = {(x, y) :
ψ(x, y) = 0, ξ(x, y) ≥ 0} is compact. Let Ξ1 = {x : ∃y, (x, y) ∈ Ξ}, the
projection of Ξ onto the x-space. Suppose v(x) is continuous on Ξ1. Then,
for all ε > 0, Algorithm 3.1 must terminate within finitely many steps.

Proof. By the assumption, the point (x̄, ȳ) is feasible for the subproblem (Pk) for
all k. Hence, we have F ∗

k ≤ F ∗. The rest of the proof is the same as the proof of
Theorem 3.5.

In the above theorem, the existence of the point (x̄, ȳ) satisfying the require-
ment may be hard to check. If v(x) has restricted inf-compactness at x∗ and the
Mangasarian–Fromovitz constraint qualification (MFCQ) holds at all solutions of the
lower level problem (1.2), then the value function v(x) is Lipschitz continuous at x∗;
see [8, Corollary 1]. Recently, it was shown in [14, Corollary 4.8] that the MFCQ can
be replaced by a weaker condition called quasi-normality in the above result.

5. Numerical experiments. In this section, we present numerical experiments
for solving BPPs. In Algorithm 3.1, the polynomial optimization subproblems are
solved by Lasserre semidefinite relaxations, implemented in software Gloptipoly 3
[15] and the SDP solver SeDuMi [36]. The computation is implemented with MATLAB
R2012a on a MacBook Pro 64-bit OS X (10.9.5) system with 16GB memory and 2.3
GHz Intel Core i7 CPU. In the algorithms, we set the parameters kmax = 20 and
ε = 10−5. In reporting computational results, we use (x∗, y∗) to denote the computed
global optimizers, F ∗ to denote the value of the outer objective function F at (x∗, y∗),
v∗ to denote infz∈Z H(x∗, y∗, z), Iter to denote the total of number of iterations for
convergence, and Time to denote the CPU time taken to solve the problem (in seconds,
unless stated otherwise). When v∗ ≥ −ε, the computed point (x∗, y∗) is considered
as a global minimizer of (P ), up to the tolerance ε. Mathematically, to solve BPPs
exactly, we need to set ε = 0. However, in computational practice, the round-off errors
always exist, so we choose ε > 0 to be a small number.
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5.1. Examples of SBPPs.

Example 5.1 (see [26, Example 3.26]). Consider the SBPP⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

min
x∈R2,y∈R3

x1y1 + x2y
2
2 + x1x2y

3
3

s.t. x ∈ [−1, 1]2, 0.1 − x2
1 ≤ 0,

1.5 − y2
1 − y2

2 − y2
3 ≤ 0,

−2.5 + y2
1 + y2

2 + y2
3 ≤ 0,

y ∈ S(x),

where S(x) is the set of minimizers of

min
z∈[−1,1]3

x1z
2
1 + x2z

2
2 + (x1 − x2)z2

3 .

It was shown in [26, Example 3.26] that the unique global optimal solution is

x∗ = (−1,−1), y∗ = (1,±1,−
√

0.5).

Algorithm 3.1 terminates after one iteration. It takes about 14.83 seconds. We get

x∗ ≈ (−1,−1), y∗ ≈ (1,±1,−0.7071),

F ∗ ≈ −2.3536, v∗ ≈ −5.71 × 10−9.

Example 5.2. Consider the SBPP

(5.1)

⎧⎪⎨⎪⎩
min

x∈R2,y∈R3
x1y1 + x2y2 + x1x2y1y2y3

s.t. x ∈ [−1, 1]2, y1y2 − x2
1 ≤ 0,

y ∈ S(x),

where S(x) is the set of minimizers of{
min
z∈R3

x1z
2
1 + x2

2z2z3 − z1z
2
3

s.t. 1 ≤ z2
1 + z2

2 + z2
3 ≤ 2.

Algorithm 3.1 terminates after one iteration. It takes about 13.45 seconds. We get

x∗ ≈ (−1,−1), y∗ ≈ (1.1097, 0.3143,−0.8184),

F ∗ ≈ −1.7095, v∗ ≈ −1.19 × 10−9.

By Theorem 3.5, we know (x∗, y∗) is a global optimizer, up to a tolerance around
10−9.

Example 5.3. We consider some test problems from [26]. For convenience of dis-
play, we choose problems that have common constraints x ∈ [−1, 1] for the outer level
program and z ∈ [−1, 1] for the inner level program. When Algorithm 3.1 is applied,
all these SBPPs are solved successfully. The outer objective F (x, y), the inner objec-
tive f(x, z), the global optimizers (x∗, y∗), the number of consumed iterations Iter,
the CPU time taken to solve the problem, the optimal value F ∗, and the value v∗

are reported in Table 5. In all problems, except Ex. 3.18 and Ex. 3.19, the optimal
solutions we obtained coincide with those given in [26]. For Ex. 3.18, the global opti-
mal solution for minimizing the upper level objective −x2 + y2 subject to constraints
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Table 5

Results for some SBPP problems in [26]. They have the common constraints x ∈ [−1, 1] and
z ∈ [−1, 1].

Problem SBPP (x∗, y∗) Iter Time F ∗ v∗

Ex. 3.14
F = (x− 1/4)2 + y2

f = z3/3 − xz
(0.2500, 0.5000) 2 0.49 0.2500 −5.7e-10

Ex. 3.15
F = x+ y

f = xz2/2 − z3/3
(−1.0000, 1.0000) 2 0.42 2.79e-8 −4.22e-8

Ex. 3.16
F = 2x+ y

f = −xz2/2 − z4/4
(−0.5,−1), (−1, 0) 2 0.47 −2.0000 −6.0e-10

Ex. 3.17
F = (x+ 1/2)2 + y2/2
f = xz2/2 + z4/4

(−0.2500,±0.5000) 4 1.12 0.1875 −8.3e-11

Ex. 3.18
F = −x2 + y2

f = xz2 − z4/2
(1.0000, 0.0000) 2 0.44 −1.0000 −3.1e-13

Ex. 3.19
F = xy − y + y2/2
f = −xz2 + z4/2

(0.1886, 0.4343) 2 0.41 −0.2581 −3.6e-12

Ex. 3.20
F = (x− 1/4)2 + y2

f = z3/3 − x2z
(0.5000, 0.5000) 2 0.38 0.3125 −1.1e-10

x, y ∈ [−1, 1] is x∗ = 1, y∗ = 0. It is easy to check that y∗ = 0 is the optimal solution
for the lower level problem parameterized by x∗ = 1, and hence x∗ = 1, y∗ = 0 is
also the unique global minimizer for the SBPP in Ex. 3.18. For Ex. 3.19, as shown
in [26], the optimal solution must have x∗ ∈ (0, 1). For such x∗, S(x∗) = {±√

x∗}.
Plugging y = ±√

x into the upper level objective, we have F (x, y) = ±x√x+
√
x+ x

2 .
It is obvious that the minimum over 0 < x < 1 should occur when y =

√
x. So

minimizing F (x, y) = x
√
x − √

x + x
2 over 0 < x < 1 gives x∗ = (

√
13−1
6 )2≈ 0.1886,

y∗ =
√

13−1
6 ≈ 0.4343.

Example 5.4. Consider the SBPP

(5.2)

⎧⎪⎨⎪⎩
min

x∈R4,y∈R4
x2

1y1 + x2y2 + x3y
2
3 + x4y

2
4

s.t. ‖x‖2 ≤ 1, y1y2 − x1 ≤ 0,
y3y4 − x2

3 ≤ 0, y ∈ S(x),

where S(x) is the set of minimizers of{
min
z∈R4

z2
1 − z2(x1 + x2) − (z3 + z4)(x3 + x4)

s.t. ‖z‖2 ≤ 1, z2
2 + z2

3 + z2
4 − z1 ≤ 0.

We apply Algorithm 3.1 to solve (5.2). The computational results are reported in
Table 6. As one can see, Algorithm 3.1 stops when k = 4 and solves (5.2) successfully.
It takes about 20 minutes to solve the problem. By Theorem 3.5, we know the point
(xk

i , y
k
i ) obtained at k = 4 is a global optimizer for (5.2), up to a tolerance around

10−8.

An interesting special case of SBPPs is that the inner level program has no con-
straints, i.e., Z = Rp. In this case, the set KFJ(x) of Fritz John points is just the set
of critical points of the inner objective f(x, z). It is easy to see that the polynomial
ψ(x, y) is given as

ψ(x, z) =
(

∂

∂z1
f(x, z), . . . ,

∂

∂zp
f(x, z)

)
.
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Table 6

Results of Algorithm 3.1 for solving (5.2).

Iter k (xk
i , y

k
i ) F ∗

k vk
i

0 (−0.0000, 1.0000,−0.0000, 0.0000, 0.6180,−0.7862, 0.0000, 0.0000) −0.7862 −1.6406
1 (0.0000,−0.0000, 0.0000,−1.0000, 0.6180,−0.0000, 0.0000,−0.7862) −0.6180 −0.3458

(0.0003,−0.0002,−0.9999, 0.0000, 0.6180, 0.0001,−0.7861,−0.0000) −0.6180 −0.3458
2 (0.0000,−0.0000,−0.8623,−0.5064, 0.6180,−0.0000,−0.6403,−0.4561) −0.4589 −0.0211
3 (0.0000,−0.0000,−0.7098,−0.7042, 0.6180,−0.0000,−0.5570,−0.5548) −0.4371 −6.37e-5
4 (0.0000,−0.0000,−0.7071,−0.7071, 0.6180, 0.0000,−0.5559,−0.5559) −0.4370 −2.27e-8

Example 5.5 (SBPPs with Z = Rp). Consider random SBPPs with ball condi-
tions on x and no constraints on z:

(5.3)

⎧⎪⎨⎪⎩
F ∗ := min

x∈Rn, y∈Rp
F (x, y)

s.t. ‖x‖2 ≤ 1, y ∈ argmin
z∈Rp

f(x, z),

where F (x, y) and f(x, z) are generated randomly as

F (x, y) := aT
1 [u]2d1−1 + ‖B1[u]d1‖2,

f(x, z) := aT
2 [x]2d2−1 + aT

3 [z]2d2−1 +
∥∥∥∥B2

(
[x]d2

[z]d2

)∥∥∥∥2

.

In the above, x = (x1, . . . , xn), y = (y1, . . . , yp), z = (z1, . . . , zp), u = (x, y), and
d1, d2 ∈ N. The symbol [x]d denotes the vector of monomials in x and of degrees
≤ d, while [x]d denotes the vector of monomials in x and of degrees equal to d. The
symbols [y]d, [y]d, [u]d are defined in the same way.

Table 7

Results for random SBPPs as in (5.3).

n p d1 d2
Iter Time v∗

Min Avg Max Min Avg Max Min Avg Max
2 3 3 2 1 1.9 5 00:01 00:02 00:06 −3.8e-6 −2.9e-7 −4.32e-8
3 3 2 2 1 1.6 2 00:04 00:07 00:09 −4.0e-6 −3.7e-7 −1.1e-10
3 3 3 2 1 1.7 2 00:04 00:07 00:10 −2.0e-6 −2.6e-7 −7.4e-11
4 2 2 2 1 1.4 3 00:04 00:06 00:09 −3.0e-6 −2.4e-7 −4.9e-12
4 3 2 2 1 2.3 5 00:15 00:41 01:36 −5.3e-6 −6.4e-7 −4.67e-9
5 2 2 2 1 1.9 4 00:14 00:33 01:13 −3.5e-6 −8.1e-7 −4.3e-11
5 3 2 2 1 1.8 3 06:30 10:04 11:56 −1.1e-6 −3.8e-7 −1.9e-10
6 2 2 2 1 2.0 4 04:02 09:56 17:39 −6.2e-6 −1.5e-6 −5.57e-7

We test the performance of Algorithm 3.1 for solving SBPPs in the form (5.3). The
computational results are reported in Table 7. In the table, we randomly generated
20 instances for each case. Avg Iter denotes the average number of iterations taken by
Algorithm 3.1, Avg Time denotes the average of consumed time, and Avg(v∗) denotes
the average of the values v∗. The consumed computational time is in the format
mn:sc, with mn and sc standing for minutes and seconds, respectively. As we can see,
these SBPPs were solved successfully. In Table 7, the computational time in the last
two rows are much bigger than those in the previous rows. This is because the newly
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added Jacobian equation ψ(x, y) = 0 has more polynomials and has higher degrees.
Consequently, in order to solve (Pk) and (Qk

i ) globally by Lasserre relaxations, the
relaxation orders need to be higher. This makes the semidefinite relaxations more
difficult to solve.

Example 5.6 (random SBPPs with ball conditions). Consider the SBPP

(5.4)

⎧⎪⎨⎪⎩
min

x∈Rn, y∈Rp
F (x, y)

s.t. ‖x‖2 ≤ 1, y ∈ argmin
‖z‖2≤1

f(x, z).

The outer and inner objectives F (x, y), f(x, z) are generated as

F (x, y) = aT [(x, y)]2d1 , f(x, z) =
(

[x]d2

[z]d2

)T

B

(
[x]d2

[z]d2

)
.

The entries of the vector a and matrix B are generated randomly, obeying Gaussian
distributions. The symbols like [(x, y)]2d1 are defined similarly as in Example 5.5. We
apply Algorithm 3.1 to solve (5.4). The computational results are reported in Table 8.
The meanings of Avg Iter, Avg Time, and Avg(v∗) are same as in Example 5.5. As
we can see, the SBPPs as in (5.4) can be solved successfully by Algorithm 3.1.

Table 8

Results for random SBPPs in (5.4).

n p d1 d2
Iter Time v∗

Min Avg Max Min Avg Max Min Avg Max
3 2 2 2 1 2.6 6 00:01 00:03 00:06 −7.4e-7 −1.4e-7 2.0e-9
3 3 2 2 1 2.7 6 00:03 00:09 00:21 −2.6e-6 −6.5e-7 −1.5e-9
3 3 3 2 1 3.0 5 00:03 00:09 00:17 −2.9e-6 −3.6e-7 −1.1e-9
4 2 2 2 1 3.5 8 00:03 00:20 00:43 −1.8e-6 −5.0e-7 1.4e-9
4 3 2 2 1 2.6 5 00:12 00:31 01:01 −2.9e-6 −3.0e-7 1.8e-9
5 2 2 2 1 3.7 11 00:11 00:43 02:06 −3.9e-6 −1.7e-7 −3.4e-9
5 2 3 2 1 3.4 10 00:10 00:41 02:15 −3.6e-6 −5.4e-7 −1.5e-9
6 2 2 2 1 2.6 6 03:21 09:17 22:41 −4.3e-6 −5.7e-7 5.8e-10
6 2 3 2 1 2.4 5 03:15 08:23 17:42 −6.2e-7 −1.5e-7 2.7e-10

5.2. Examples of GBPPs.

Example 5.7. Consider the GBPP

(5.5)

⎧⎪⎨⎪⎩
min

x∈R2,y∈R3

1
2x

2
1y1 + x2y

2
2 − (x1 + x2

2)y3

s.t. x ∈ [−1, 1]2, x1 + x2 − x2
1 − y2

1 − y2
2 ≥ 0,

y ∈ S(x),

where S(x) is the set of minimizers of{
min
z∈R3

x2(z1z2z3 + z2
2 − z3

3)

s.t. x1 − z2
1 − z2

2 − z2
3 ≥ 0, 1 − 2z2z3 ≥ 0.

We apply Algorithm 3.1 to solve (5.5). Algorithm 3.1 terminates at the iteration
k = 0. It takes about 10.18 seconds to solve the problem. We get

x∗ ≈ (1, 1), y∗ ≈ (0, 0, 1), F ∗
0 ≈ −2, v∗ ≈ −2.95 × 10−8.
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Since Z0 = ∅, we have F ∗
0 ≤ F ∗ (the global minimum value). Moreover, (x∗, y∗) is

feasible for (5.5), so F (x∗, y∗) ≥ F ∗. Therefore, F (x∗, y∗) = F ∗ and (x∗, y∗) is a
global optimizer, up to a tolerance around 10−8.

Example 5.8. Consider the GBPP

(5.6)

⎧⎪⎨⎪⎩
min

x∈R4,y∈R4
(x1 + x2 + x3 + x4)(y1 + y2 + y3 + y4)

s.t. ‖x‖2 ≤ 1, y2
3 − x4 ≤ 0,

y2y4 − x1 ≤ 0, y ∈ S(x),

where S(x) is the set of minimizers of⎧⎪⎨⎪⎩
min
z∈R4

x1z1 + x2z2 + 0.1z3 + 0.5z4 − z3z4

s.t. z2
1 + 2z2

2 + 3z2
3 + 4z2

4 ≤ x2
1 + x2

3 + x2 + x4,
z2z3 − z1z4 ≥ 0.

We apply Algorithm 3.1 to solve (5.6). The computational results are reported in
Table 9. Algorithm 3.1 stops with k = 1. It takes about 490.65 seconds to solve the
problem. We are not sure whether the point (xk

i , y
k
i ) computed at k = 1 is a global

optimizer or not.

Table 9

Results of Algorithm 3.1 for solving (5.6).

Iter k (xk
i , y

k
i ) F ∗

k vk
i

0 (0.5442, 0.4682, 0.4904, 0.4942,−0.7792,−0.5034,−0.2871,−0.1855) −3.5050 −0.0391
1 (0.5135, 0.5050, 0.4882, 0.4929,−0.8346,−0.4104,−0.2106,−0.2887) −3.4880 3.29e-9

Example 5.9. In this example we consider some GBPP examples given in the
literature. The problems and the computational results are displayed in Table 10.
Problem 1 is [1, Example 3.1] and the optimal solution (x∗, y∗) = (0, 0) is reported.
Problem 2 is [43, Example 4.2] and the optimal solution (x∗, y∗) = (1, 1) is reported.
Problem 3 is [26, Example 3.22]. As shown in [26], the optimal solution should
attain at a point satisfying 0 < x < 1 and y = −0.5 + 0.1x. For (x, y) satisfying
these conditions, the lower level constraint 0.01(1 + x2) − y2 ≤ 0 becomes inactive.
Plugging y = −0.5+ 0.1x into the upper level objective, the bilevel program becomes
finding the minimum of the convex function (x − 0.6)2 + (−0.5 + 0.1x)2. Hence the
optimal solution is (x∗, y∗) = ( 65

101 ,
44
101 ). Problem 4 can be found in [26, Example 4.2]

with the optimal solution (x∗, y∗) = (1, 0, 1) reported. Problem 5 can be found in [26,
Example 5.1], where the optimal solution (x∗, y∗) = (5, 4, 2) is derived. Problem 6 is
[10, Example 3.1]. As shown in [10], the optimal solution is (x∗, y∗) = (

√
0.5,

√
0.5).

Problem 7 was originally given in [3, Example 3] and analyzed in [1]. It was reported
in [1] that the optimal solution is x∗ = (0, 2), y∗ ≈ (1.875, 0.9062). In fact we can
show that the optimal solution is x∗ = (0, 2), y∗ = (15

8 ,
29
32 ) as follows. Since the upper

objective is separable in x and y, it is easy to show that the optimal solution for the
problem

min
(x1,x2)≥0

−x2
1 − 3x2 − 4y1 + y2

2 s.t. − x2
1 − 2x2 + 4 ≥ 0

with y1, y2 fixed is x∗
1 = 0, x∗

2 = 2. Since y∗ = (15
8 ,

29
32 ) is the optimal solution to

the lower level problem parameterized by x∗ = (0, 2), we conclude that the optimal
solution is x∗ = (0, 2), y∗ = (15

8 ,
29
32 ). From Table 10, we can see that Algorithm 3.1

stops in very few steps with global optimal solutions for all problems.
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Table 10

Results for some GBPPs.

No. Small GBPPs Results

1

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

min
x∈R,y∈R

−x− y

s.t. y ∈ S(x) := argmin
z∈Z(x)

z

Z(x) := {z ∈ R| − x+ z ≥ 0, −z ≥ 0}.

F ∗ −2.78e-13

Iter 1

x∗ 3.82e-14

y∗ 2.40e-13

v∗ −7.43e-13

Time 0.19

2

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

min
x∈R,y∈R

(x− 1)2 + y2

s.t. x ∈ [−3, 2], y ∈ S(x) := argmin
z∈Z(x)

z3 − 3z

Z(x) := {z ∈ R|z ≥ x}.

F ∗ 0.9999

Iter 2

x∗ 0.9996

y∗ 1.0000

v∗ −4.24e-9

Time 0.57

3

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

min
x∈R,y∈R

(x− 0.6)2 + y2

s.t. x, y ∈ [−1, 1], y ∈ S(x) := argmin
z∈Z(x)

f(x, z) = z4 + 4
30 (1 − x)z3

+(0.16x − 0.02x2 − 0.4)z2 + (0.004x3 − 0.036x2 + 0.08x)z,

Z(x) := {z ∈ R|0.01(1 + x2) ≤ z2, z ∈ [−1, 1]}.

F ∗ 0.1917

Iter 2

x∗ 0.6436

y∗ −0.4356

v∗ 2.18e-10

Time 0.52

4

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

min
x∈R,y∈R2

x3y1 + y2

s.t. x ∈ [0, 1], y ∈ [−1, 1] × [0, 100], y ∈ S(x) := argmin
z∈Z(x)

− z2

Z(x) := {z ∈ R2|xz1 ≤ 10, z21 + xz2 ≤ 1, z ∈ [−1, 1] × [0, 100]}.

F ∗ 1

Iter 1

x∗ 1

y∗ (0,1)

v∗ 3.45e-8

Time 1.83

5

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

min
x∈R,y∈R2

−x− 3y1 + 2y2

s.t. x ∈ [0, 8], y ∈ [0, 4] × [0, 6], y ∈ S(x) = argmin
z∈Z(x)

− z1

Z(x) :=

{
z ∈ R2

∣∣∣∣∣ −2x+ z1 + 4z2 ≤ 16, 8x+ 3z1 − 2z2 ≤ 48

2x− z1 + 3z2 ≥ 12, z ∈ [0, 4] × [0, 6]

}
.

F ∗ −13

Iter 1

x∗ 5

y∗ (4,2)

v∗ 3.95e-6

Time 0.38

6

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

min
x∈R2,y∈R2

−y2
s.t. y1y2 = 0, x ≥ 0, y ∈ S(x) := argmin

z∈Z(x)
z21 + (z2 + 1)2

Z(x) :=

{
z ∈ R2

∣∣∣∣∣ (z1 − x1)2 + (z2 − 1 − x1)2 ≤ 1,

(z1 + x2)2 + (z2 − 1 − x2)2 ≤ 1

}
.

F ∗ −1

Iter 2

x∗ (0.71,0.71)

y∗ (0,1)

v∗ −3.77e-10

Time 0.60

7

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

min
x∈R2,y∈R2

−x2
1 − 3x2 − 4y1 + y22

s.t. (x, y) ≥ 0,−x2
1 − 2x2 + 4 ≥ 0, y ∈ S(x) := argmin

z∈Z(x)
z21 − 5z2

Z(x) :=

{
z ∈ R2

∣∣∣∣∣ x2
1 − 2x1 + x2

2 − 2z1 + z2 + 3 ≥ 0,

x2 + 3z1 − 4z2 − 4 ≥ 0

}
.

F ∗ −12.6787

Iter 2

x∗ (0,2)

y∗ (1.88,0.91)

v∗ 2.40e-6

Time 10.52

6. Conclusions and discussions. This paper studies how to solve both sim-
ple and general bilevel polynomial programs. We reformulate them as equivalent
semi-infinite polynomial programs, using Fritz John conditions and Jacobian repre-
sentations. Then we apply the exchange technique and Lasserre-type semidefinite
relaxations to solve them. For solving SBPPs, we proposed Algorithm 3.1 and proved
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its convergence to global optimal solutions. For solving GBPPs, Algorithm 3.1 can
also be applied, but its convergence to global optimizers is not guaranteed. However,
under some assumptions, GBPPs can also be solved globally by Algorithm 3.1. Exten-
sive numerical experiments are provided to demonstrate the efficiency of the proposed
method. To see the advantages of our method, we would like to make some compar-
isons with two existing methods for solving bilevel polynomial programs. The first
one is the value function approximation approach proposed by Jeyakumar et al. [17];
the second one is the branch and bound approach proposed by Mitsos, Lemonidis,
and Barton [27].

6.1. Comparison with the value function approximation approach. For
solving SBPPs with convex lower level programs, a semidefinite relaxation method
was proposed in [17, section 3], under the assumption that the lower level programs
satisfy both the nondegeneracy condition and the Slater condition. It uses multipliers,
appearing in the Fritz John conditions, as new variables in SOS-type representations.
For SBPPs with nonconvex lower level programs, it was proposed in [17, section 4] to
solve the following ε-approximation problem (for a tolerance parameter ε > 0):

(6.1) (P k
ε ) :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
F k

ε := min
x∈Rn,y∈Rp

F (x, y)

s.t. Gi(x, y) ≥ 0, i = 1, . . . ,m1,

gj(y) ≥ 0, j = 1, . . . ,m2,

f(x, y) − Jk(x) ≤ ε.

In the above, Jk(x) ∈ R2k[x] is a 1
k -solution for approximating the nonsmooth value

function v(x) [17, Algorithm 4.5]. For a given parameter ε > 0, the method in [17,
section 4] finds the approximating polynomial Jk(x) first and then solves (P k

ε ) by
Lasserre-type semidefinite relaxations. Theoretically, ε > 0 can be chosen as small as
possible. However, in computational practice, when ε > 0 is very small, the degree 2k
needs to be chosen very high, making it hard to compute Jk(x). In the following, we
give an example to compare our Algorithm 3.1 and the method in [17, section 4].

Example 6.1. Consider the SBPP

(6.2)

⎧⎨⎩F
∗ := min

x∈R2,y∈R2
y3
1(x

2
1 − 3x1x2) − y2

1y2 + y2x
3
2

s.t. x ∈ [−1, 1]2, y2 + y1(1 − x2
1) ≥ 0, y ∈ S(x),

where S(x) is the solution set of the optimization problem

v(x) := min
z∈R2

z1z
2
2 − z3

2 − z2
1(x2 − x2

1) s.t. z2
1 + z2

2 ≤ 1.

The computational results of applying Algorithm 3.1 is shown in Table 11. It took
only two steps to solve the problem successfully. The set U is compact. For each x,
S(x) �= ∅, since the lower level program is defined as a polynomial over a compact
set. The value function v(x) of lower level programs is continuous. The feasible set
of problem (6.2) is nonempty and compact. At the iteration k = 1, the value vk

i is
almost zero, so the point (0.5708,−1.0000,−0.1639, 0.9865) is a global optimizer of
problem (6.2), up to a tolerance around 10−9.

Next, we apply the method in [17, section 4]. We use the software Yalmip [22]
to compute the approximating polynomial Jk(x) ∈ R2k[x], as in [17, Algorithm 4.5].
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Table 11

Computational results of Algorithm 3.1 for solving (6.2).

Iter k (xk
i , y

k
i ) zk

i,j F ∗
k vk

i

0 (1.0000,−1.0000,−1.0000, 0.0000) (−0.1355, 0.9908) −4.0000 −3.0689
(−1.0000, 1.0000,−1.0000, 0.0000) (-0.2703,0.9628) −4.0000 −1.1430

1 (0.5708,−1.0000,−0.1639, 0.9865) (−0.1638, 0.9865) −1.0219 −4.76e-9

After that, we solve the problem (P k
ε ) by Lasserre-type semidefinite relaxations, for

a parameter ε > 0. Let F k
ε denote the optimal value of (6.1). The computational

results are shown in Table 12. As ε is close to 0, we can see that F k
ε is close to the

true optimal value F ∗ ≈ −1.0219. Since the method in [17] depends on the choice of
ε > 0, we do not compare the computational time. In applications, the optimal value
F ∗ is typically unknown. An interesting question for research is how to select a value
of ε > 0 that guarantees Fε is close enough to F ∗.

Table 12

Computational results of the method in [17, section 4].

ε F 2
ε F 3

ε F 4
ε

1.0 −3.4372 −3.6423 −3.6439
0.5 −1.5506 −1.5909 −1.5912
0.25 −1.2718 −1.2746 −1.2750
0.125 −1.1746 −1.1775 −1.1779
0.05 −1.1193 −1.1224 −1.1228
0.01 −1.0897 −1.0930 −1.0934
0.005 −1.0858 −1.0892 −1.0897
0.001 −1.0827 −1.0862 −1.0867
0.0001 −1.0820 −1.0855 −1.0860

6.2. Comparison with the branch and bound approach. Mitsos, Lemoni-
dis, and Barton [27] proposed a bounding algorithm for solving bilevel programs, in
combination with the exchange technique. It works on finding a point that satisfies
ε-optimality in the inner and outer programs. For the lower bounding algorithm, a
relaxed program needs to be solved globally. The optional upper bounding problem
is based on probing the solution obtained by the lower bounding procedure. The
algorithm can be extended to use branching techniques. For cleanness of the paper,
we do not repeat the details here. Interested readers are referred to [27]. We list some
major differences between the method in our paper and the one in [27].

• The method in [27] is based on building a tree of nodes of subproblems, ob-
tained by partitioning box constraints for the variables x, y. Our method does
not need to build such a tree of nodes and does not require box constraints
for partitioning.

• For each subproblem in the lower/upper bounding, a nonlinear nonconvex
optimization, or a mixed integer nonlinear nonconvex optimization, needs to
be solved globally or with ε-optimality. The software applications GMAS [34]
and BARON [35] are applied to solve them. In contrast, our method does not
solve these nonlinear nonconvex subproblems by BARON and GMAS. Instead,
we solve them globally by Lasserre-type semidefinite relaxations, which are
convex programs and can be solved efficiently by a standard SDP package like
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SeDuMi. In our computational experiments, the subproblems are all solved
globally by GloptiPoly 3 [15] and SeDuMi [36].

In [27], the branch and bound method was implemented in C++, and the sub-
problems were solved by BARON and GMAS. In our paper, the method is implemented
in MATLAB, and the subproblems are solved by GolptiPoly 3 and SeDuMi. Their
approaches and implementations are very different. It is hard to find a good way
to compare them directly. However, for BPPs, the subproblems in [27] and in our
paper are all polynomial optimization problems. To compare the two methods, it is
reasonably well to compare the number of subproblems that are needed to be solved,
although this may not be the best way.

We choose the seven SBPPs in Example 5.3, which were also in [27]. The num-
bers of subproblems are listed in Table 13. In the table, B & B (I) is the branch
and bound method in [27] without branching; B & B (II) is the branch and bound
method in [27] with branching; #LBD is the number of lower bounding subproblems;
#UBD is the number of upper bounding subproblems; #L-POP is the number of
subproblems (Pk) needs to be solved in Algorithm 3.1; #U-POP is the number of
subproblems (Qk

i ) needs to be solved in Algorithm 3.1. The number of variables in
lower bounding subproblems for branch and bound methods (I/II) and subproblem
(Pk) for Algorithm 3.1 are the same, all equal to n + p; the number of variables in
upper bounding subproblems for branch and bound methods (I/II) and subproblem
(Qk

i ) for Algorithm 3.1 are the same, all equal to p. For problem Ex. 3.16, since the
subproblem (Pk) has two optimal solutions, so we need to solve two subproblems (Qk

i )
to check if they are both global optimal solutions. From Table 13, one can see that
Algorithm 3.1 has a smaller number of subproblems that need to be solved. If all the
subproblems are solved by the same method, Algorithm 3.1 is expected to be more
efficient.

Table 13

A comparison of the numbers of polynomial optimization subproblems in [27] and in Algorithm
3.1.

Problem B & B (I) B & B (II) Alg. 3.1
#LBD #UBD #LBD #UBD #L-POP #U-POP

Ex. 3.14 4 3 7 3 2 2
Ex. 3.15 2 1 3 1 2 2
Ex. 3.16 2 1 3 1 2 3
Ex. 3.17 19 18 37 18 4 4
Ex. 3.18 2 2 3 2 2 2
Ex. 3.19 13 12 27 14 2 2
Ex. 3.20 4 3 5 3 2 2
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