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1. Introduction. We consider the parametric regression model

y=

p
∑

j=0

θjfj(x)+ ε, x∈ S,

in which y ∈R is the response variable, x ∈ S ⊂R
k is the design variable, ε is a random error

with mean 0 and variance σ2, fj , j = 0, . . . , p are given basis functions supported in S and the

θj , j =0, . . . , p are parameters to be estimated.

Example 1.1. If S = [−1,1] and fj(x) = xj as in [28], one speaks of p-th order polynomial

regression on [−1,1].

We shall use the notation f(x) = (f0(x), . . . , fp(x))
⊤ and θ= (θ0, . . . , θp)

⊤.
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A frequent problem in statistical sciences is that of defining a probability measure ξ on S
that will allow for optimal estimation of the function

ϕ(x) :=

p
∑

j=0

θjfj(x) = θ⊤f(x).

By optimal, we mean several possible criteria, all of them having to do with the so-called
information matrix

A(ξ) :=

∫

S

f(x)f(x)⊤dξ(x). (1)

This matrix stems from the least squares estimation of the parameter θ. As a matter of fact, in
the optimization problem

∣

∣

∣

∣

∣

∣

Min h(θ) :=

∫

S

(

y(x)− θ⊤f(x)
)2
dξ(x)

s.t. θ ∈R
p+1,

the objective function can be written as

h(θ) =

∫

S

(

y(x)2+(f(x)⊤θ)2− 2y(x)f(x)⊤θ
)

dξ(x)

=

∫

S

y(x)2 dξ(x)+ θ⊤
∫

S

f(x)f(x)⊤dξ(x) θ− 2

∫

S

y(x)f(x)⊤dξ(x) θ

= c(ξ)+ 〈θ,A(ξ)θ〉− 2〈ψ(ξ), θ〉,

in which we have defined

c(ξ) :=

∫

S

y(x)2 dξ(x) and ψ(ξ) :=

∫

S

y(x)f(x) dξ(x).

The standard first order necessary optimality condition (which is also sufficient by convexity
of h) then reads:

A(ξ)θ= ψ(ξ). (2)

Therefore, estimating θ entails solving the above linear system. As is well known, the condition
number of the matrix A(ξ) measures the maximum amount by which a perturbation in an
experiment measurement y(x) will be transmitted to the unknown regression parameter θ. In
order to minimize the error sensitivity, it is desirable to find a design ξ∗ which minimizes the
condition number of the information matrix A(ξ), denoted throughout by κ(A(ξ)). This suggests
to select ξ∗ by solving the optimization problem:

(M )

∣

∣

∣

∣

∣

Min κ(A(ξ))

s.t. ξ ∈Π,

in which Π denotes the (convex) set of all probability measures on S and κ denotes the condition
number. In [28], a solution to (M ) was investigated under the form of a finite combination
of Dirac measures

∑

i piδxi. Such a parametrization (by both locations xi and probabilities pi)
introduces a rather high level of nonlinearity in A(ξ). It is well-known that the maximum and the
minimum eigenvalues for a positive definite matrix are in general nonsmooth and consequently
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so is the condition number. Since the condition number is only quasiconvex and not convex, the
condition number minimization problem is a nonsmooth and nonconvex optimization problem
and nonsmooth optimization techniques are usually needed to solve such a problem (see [16, 6]).
In [28], it was shown that for the special case where the design space is [−1,1] and the regression
is the polynomial, the condition number is a smooth function and hence the standard smooth
optimization techniques can be used.

In the present paper, we propose to divide the problem into two subproblems: first choose
among all matrices of the form (1) a matrix Ā with minimum condition number, and then infer
a probability measure that is compatible with the previous solution. Notice that, by minimizing
the condition number of the real symmetric matrix A(ξ), we are likely to obtain a full rank
matrix.

The first step of our inference process consists in solving the problem

(Q)

∣

∣

∣

∣

∣

Min κ(A)

s.t. A∈I := {A(ξ)|ξ ∈Π}.
Following [16], we define the condition number of a real symmetric matrix A as

κ(A) :=











λmax(A)/λmin(A) if λmin(A)> 0,

∞ if λmin(A) = 0 and λmax(A)> 0,

0 if A= 0,

in which λmax(A) and λmin(A) are respectively the largest and smallest eigenvalues. Note that
the set I is convex, as the image of the convex set Π by the linear mapping ξ 7→A(ξ). Mild
assumptions on f will also ensure compactness of I , so that Problem (Q) falls into the class
of problems studied in [16, 13]. We may also make the following

Standing assumption: The set I contains nonsingular matrices.
Under this assumption, our minimization problem will produce full rank optimal solutions.
Remark 1.1. If we are given a family of functions F := {f0, . . . , fp} and a measure ξ such
that F is orthonormal with respect to the scalar product

〈g2, g1〉 :=
∫

S

g1(x)g2(x) dξ(x),

then ξ is automatically K-optimal. As a matter of fact, it is readily seen that, in this case, the
information matrix is the identity. An ocurrence of this will be dealt with in Proposition 4.1
below. In general however, in statistics, the set of basis functions is given, and it may not exist
a measure making this set orthonormal.

The second stage of our inference process will then consist in inferring a representing prob-
ability measure for the optimal moment matrix Ā. We suggest to use the maximum entropy
principle, that is, to select a probability measure ξ̄ by solving the optimization problem

(E0)

∣

∣

∣

∣

∣

Min K (ξ)

s.t. ξ ∈Π, A(ξ) = Ā.

Here, the entropy K (ξ) is defined as usual by

K (ξ) =







∫

S

ln
dξ

dλ
(x) dξ(x) if ξ ≺≺ λ

∞ otherwise,
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in which dξ/dλ denotes the Radon-Nikodym derivative of ξ with respect to the Lebesgue mea-
sure λ and ξ ≺≺ λ means that the measure ξ is absolutely continuous with respect to the measure
λ.

We emphasize that, in the above form, our entropy problem may not be solvable. The reason

for this is twofold: first, nothing guarantees that Ā has a representing measure that is absolutely
continuous with respect to the Lebesgue measure; second, the matrix Ā will result from numeri-
cal computations, and therefore may not satisfy rigorously the constraint Ā ∈I . Consequently,

we must relax Problem (E0) and consider instead a problem of the form

(E )

∣

∣

∣

∣

∣

Min K (ξ)+
1

2α
‖A(ξ)− Ā‖2

s.t. ξ ∈Π.

In Remark 3.1 below, we shall further justify this relaxation by showing that the relaxed prob-

lems (which always have solutions) approximate the unrelaxed one, in a sense to be specified.
In this paper, we concentrate on the case where S = [a, b] and the components of f(x) form a

family of polynomials that is graduated in degree. In this case, the information matrix depends
linearly on the moments y= (y0, . . . , yp), i.e.,

A(ξ) =A[y] =

2p
∑

k=0

ykA
(k)

for some matrices A(k). For example, if f(x) = (1, x, . . . , xp)⊤, then the information matrix is
given by

A(ξ) =H(y0, . . . , y2p) :=















y0 y1 . . . yp

y1 y2 . . . yp+1

...
...

...

yp yp+1 . . . y2p















, with yk :=

∫ b

a

xk dξ(x).

Throughout, H(y0, . . . , y2p) will denote the Hankel matrix associated with the sequence
(y0, . . . , y2p). The Chebyshev polynomial model, considered in Section 4 below, provides another

such example.

2. K-optimal moments. In this section, we show that, since the information matrix A(ξ)
depends linearly on the moments, (Q) can be written as an SDP problem, so that K-optimal
moments can be efficiently computed. This relies in part on well-known results from the theory

of truncated moment problems. Our first task is to obtain a more tractable form of the set I .
Theorem 2.1. A finite sequence y = (y0, . . . , y2p) is the sequence of moments of a measure ξ
on [a, b] if and only if the following two conditions hold:

(a) H(y0, . . . , y2p)� 0;
(b) −H(y2, . . . , y2p)+ (a+ b)H(y1, . . . , y2p−1)− abH(y0, . . . , y2p−2)� 0.

Proof. See, for example, [12], Theorem 5.39.
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We are therefore able to describe the set I in terms of Linear Matrix Inequalities (LMI). It
is readily seen that Conditions (a) and (b) in Theorem 2.1 can be respectively written as

2p
∑

k=0

ykF
(k) � 0 and

2p
∑

k=0

ykG
(k) � 0. (3)

Here, F (k) ∈R
(p+1)×(p+1) is the k-th elementary Hankel matrix, that is, F

(k)
i,j = 1 if i+ j = k and

F
(k)
i,j = 0 elsewhere, and G(k) ∈R

p×p is the sequence of matrices defined as follows:

G(0) :=













−ab 0
0













, G(1) :=













a+ b −ab 0
−ab 0
0













,

G(2) :=













−1 a+ b −ab 0
a+ b −ab 0
−ab 0
0













, G(3) :=













0 −1 a+ b −ab 0
−1 a+ b −ab 0
a+ b −ab 0
−ab 0
0













,

and so on. In the above matrices, every non written entry is zero by convention. We emphasize
that the feasible set I is a convex cone.

Next, we rewrite Problem (Q). Since the null matrix is infeasible in Problem (Q), the latter
may be rewritten as

∣

∣

∣

∣

∣

∣

∣

Min κ := t/s

s.t. t= λ1(A[y]), s= λp+1(A[y]),

A[y] ∈I .

Here, t/s is understood to be ∞ if s= 0. Next, we may replace equalities, in the first line of the
constraint, by inequalities. We obtain the following equivalent optimization problem:

∣

∣

∣

∣

∣

∣

∣

Min κ := t/s

s.t. t≥ λ1(A[y]), s≤ λp+1(A[y]),

A[y] ∈I .

The first line of the constraint is equivalent to

sI �A[y]� tI, (4)

in which I denotes the identity matrix of appropriate size. Now, under our standing assumption
above, we may discard from I all singular matrices. This amounts to replacing I by I ′ :=
I ∩Sp+1

++ which, incidentally, is again a convex cone. Dividing (4) by s and making the change
of variable A′ =A/s yields the following equivalent form of (Q):

∣

∣

∣

∣

∣

∣

∣

Min κ

s.t. I �A′[y]� κI,

A′[y] ∈I ′.
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Notice that A′[y] =A[y′] with y′ := y/s. We finally obtain the SDP problem in standard form

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Min 〈(1,0, . . . ,0), (κ, y′0, . . . , y′2p)〉
s.t. I −∑2p

k=0 y
′
kA

(k) � 0,

−κI +∑2p

k=0 y
′
kA

(k) � 0,

−∑2p

k=0 y
′
kF

(k) � 0,

−∑2p

k=0 y
′
kG

(k) � 0.

3. Entropy optimization. In this section, we study the entropy part of our inference
process. We shall use duality techniques, in order to cope with both the constraints and the fact
that the workspace is infinite dimensional. Before proceeding, we give a customary generalization
of Problem (E ), which will not induce much extra effort in the resolution.

3.1. Extension and reformulation. We may assume that some prior information on
the measure to be inferred is available, under the form of a prior probability measure y. It is
customary, in this case, to replace the entropy by Kullback-Leibler’s relative entropy [11]. For
p∈ [1,∞], we denote by Lp

µ([a, b]) the Lp-space on the measure space ([a, b],T , µ). Recall that
the entropy of a probability measure ξ relative to a probability measure µ is given by

K (ξ‖µ) :=







∫

u(x) lnu(x)dµ(x) if ξ ≺≺ µ,

∞ otherwise,

where u denotes the Radon-Nikodym derivative of ξ with respect to µ. Clearly, the choice µ being
equal to the Lebesgue measure λ gives rise to Problem (E ) stated in the introduction section.
Moreover, minimizing K (·‖µ) will enforce absolute continuity of the solution with respect to µ,
so we are led to considering the following convex (but infinite dimensional) optimization problem

(P)

∣

∣

∣

∣

∣

∣

Min Kµ(u)+
1

2α
‖Au− Ā‖2

s.t. u∈L1
µ([a, b]), 1 = Iu,

in which Iu :=
∫ b

a
u(x) dµ(x), Au :=

∫ b

a
f(x)f(x)⊤u(x) dµ(x) and

Kµ(u) :=

∫ b

a

k◦
(

u(x)
)

dµ(x), with k◦(t) :=







t ln t if t > 0,
0 if t= 0,
∞ if t < 0.

Since the functions fj are continuous on [a, b], the operator A is well-defined on L1
µ([a, b]).

Moreover, one should keep in mind that the variable u in the above problem is a Radon-Nikodym
derivative with respect to the reference measure µ. Note that the Kullback-Leibler relative
entropy is also used in Bayesian experimental design in a different manner; see [5, Section 2.2].

3.2. Reminder on partially finite convex programming. We shall use notions from
convex analysis. Our reference books for convex analysis are [10, 21, 30]. In order to solve
Problem (P), we use a dual strategy. The latter consists in the following steps:
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(1) write the dual problem of (P);
(2) study the qualification conditions;
(3) establish the primal-dual relationship.
Let X be a real vector space with X⋆ as its algebric dual space (i.e. the space of all linear

functions on X). Recall that for a function f :X→ [−∞,∞], the functions f ⋆ :X⋆ → [−∞,∞]
and f⋆ :X

⋆ → [−∞,∞] defined by

f ⋆(x⋆) := sup{〈x,x⋆〉− f(x)|x∈X}
and f⋆(x

⋆) := inf{〈x,x⋆〉− f(x)|x∈X},

where 〈x,x⋆〉 := x⋆(x), are called the upper and lower conjugate or upper and lower Fenchel
conjugate of f , respectively. The functions f ⋆⋆, f⋆⋆ :X→ [−∞,∞] defined by

f ⋆⋆(x) := sup{〈x,x⋆〉− f ⋆(x⋆)|x⋆ ∈X⋆}
and f⋆⋆(x) := inf{〈x,x⋆〉− f⋆(x

⋆)|x⋆ ∈X⋆}

are called the upper and lower biconjugate of f , respectively. Note that the upper conjugate is
always a convex function and the lower conjugate is always a concave function.

The following theorem [15] is a partially finite version of Fenchel’s duality theorem. The proof,
given below for completeness, follows in essence the argument of [4].
Theorem 3.1. Let U and V be real vector spaces and let 〈·, ·〉 be a bilinear form on U ×V . Let
T : U →R

d be a linear mapping with (formal) adjoint T⋆ : Rd → V . Let F : U → (−∞,∞] be a
convex proper function and let g : Rd → [−∞,∞) be a concave proper function. If the condition

(QC) ri (TdomF )∩ ri (domg) 6= ∅,

is satisfied, then

η := inf{F (u)− g(Tu)|u∈U }=max{g⋆(λ)−F ⋆(T⋆λ)|λ∈R
d}.

Proof. Throughout this proof, 〈·, ·〉 denotes not only the bilinear form on U ×V but also the
standard scalar product on R

d. For every u∈U , ξ ∈R
d and λ∈R

d, one has

〈ξ,λ〉− g(ξ)≥ g⋆(λ) and 〈u,T⋆λ〉−F (u)≤F ⋆(T⋆λ)

by definition of conjugacy. Letting ξ=Tu and subtracting the second inequality to the first one,
we get F (u)− g(Tu)≥ g⋆(λ)−F ⋆(T⋆λ) for every u and λ. Taking the infimum with respect
to u yields

η≥ sup{g⋆(λ)−F ⋆(T⋆λ)|λ∈R
d}. (5)

If η =−∞, the reverse inequality is trivial. Let us then assume that η >−∞ and define on R
d

the perturbation function π by

π(y) := inf{F (u)|y=Tu}. (6)

We shall prove that
(a) inf{F (u)− g(Tu)|u∈U }= inf{π(y)− g(y)|y ∈R

d};
(b) π is proper convex with domain TdomF ;
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(c) F ⋆(T⋆λ) = π⋆(λ) for every λ∈R
d.

The result will then follow from Fenchel’s duality theorem (see [21, Theorem 31.1 page 327])
applied to the functions π and g.

One has:

inf{F (u)− g(Tu)|u∈U }
= inf{F (u)− g(y)|u∈U, y ∈R

d, y=Tu}
= inf{inf{F (u)− g(y)|u∈U, y=Tu}|y ∈R

d}
= inf{π(y)− g(y)|y ∈R

d},

and (a) is clear. Suppose next that one can find y1,y2 in R
d and β1, β2 in R such that β1>π(y1)

and β2 >π(y2). Then, there must exist u1, u2 in U such that y1 =Tu1, y2 =Tu2 and β1>F (u1),
β2 >F (u2). Hence, for every α∈ (0,1], we have

(1−α)β1+αβ2 > (1−α)F (u1)+αF (u2)
≥ F

(

(1−α)u1 +αu2

)

≥ inf{F (u)|(1−α)y1 +αy2 =Tu}
= π

(

(1−α)y1 +αy2

)

.

The convexity of π then results from [21, Theorem 4.2 page 25]. Next, if u ∈ domF , then
Tu ∈ domπ, so that TdomF ⊂ domπ. Conversely, if y belongs to domπ, there exists u ∈ U
such that y=Tu and F (u)<∞, we shows that domπ⊂TdomF . Let us show that π is proper.
From (QC), there exists ŷ in both riTdomF = ridomπ and ri domg. Then, (a) shows that
η <∞. Moreover, π(ŷ)>−∞, for otherwise (a) would contradict the working assumption that
η >−∞. Consequently, π(ŷ) is finite. From [21, Theorem 7.2 page 53], π is proper, and (b) is
established. Finally, one has:

π⋆(λ) = sup{〈y,λ〉−π(y)|y ∈R
d}

= sup{〈y,λ〉−F (u)|y ∈R
d, y=Tu},

and F ⋆(T⋆λ) = sup{〈Tu,λ〉−F (u)|u∈U }
= sup{〈y,λ〉−F (u)|u∈U, y=Tu},

which shows that π⋆(λ) =F ⋆(T⋆λ) and finishes the proof of the theorem.

The condition (QC) is called a qualification condition. The theorem establishes the equality
between the optimal values of two optimization problems: the minimization of F − g ◦T, called
primal problem, and the maximization of g⋆−F ⋆ ◦T⋆, called dual problem. In the next theorem,
we establish (for the favorable cases), a connection between the solutions of these problems,
respectively called primal and dual solutions.
Theorem 3.2. With the notation and assumptions of Theorem 3.1, assume that the condition

(QC⋆) ri domg⋆ ∩ ridom(F ⋆ ◦T⋆) 6= ∅.

is satisfied, and that
(a) F ⋆⋆ = F and g⋆⋆ = g;
(b) there exists a dual solution λ̄ as well as ū∈ ∂F ⋆(T⋆λ̄) such that ∇(F ⋆ ◦T⋆)(λ̄) =Tū.
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Then ū is a primal solution.

Proof. Since ū∈ ∂F ⋆(T⋆λ̄) and F ⋆⋆ = F , we have:

F ⋆(T⋆λ̄)+F (ū) = 〈T⋆λ̄, ū〉. (7)

The optimality of λ̄ implies that 0 belongs to ∂(g⋆−F ⋆ ◦T⋆)(λ̄). The condition (QC⋆) implies,
via a standard subdifferential calculus rule, that

0∈ ∂g⋆(λ̄)− ∂(F ⋆ ◦T⋆)(λ̄).

But ∂(F ⋆ ◦T⋆)(λ̄) = {Tū} by assumption, so that the optimality of λ̄ reads

Tū ∈ ∂g⋆(λ̄).
since g⋆⋆ = g, we deduce that

g⋆(λ̄)+ g(Tū) = 〈λ̄,Tū〉. (8)

Combining Equations (7) and (8), we obtain the equality

F (ū)− g(Tū) = g⋆(λ̄)−F ⋆(T⋆λ̄),

and the optimality of ū then results from Theorem 3.1.

The above theorems are powerful tools for partially finite convex programming whenever it
is possible to compute the conjugate functions F ⋆ and g⋆. In general, the main difficulty is the
computation of F ⋆, since such a computation entails solving infinite dimensional optimization
problems. In the context of this paper, the conjugacy is easily performed, thanks to results
by Rockafellar [20, 22, 23, 24] on the conjugacy of integral functionals, which we recall in
Appendix B.

3.3. Primal-dual relationship. We now use results in Appendix B in order to deal with
dual pairs of problems such as those of Theorem 3.1 in which (U,V ) = (L1

µ([a, b]),L
∞
µ ([a, b])),

F is an integral functional, with integrand k : R×S→ R̄ defined by F (u) :=
∫

k(u(x), x)dµ(x)
and T is a well defined integral operator acting on L1-functions:

Tu=

∫

γ(x)u(x) dµ(x).

Here, each component of γ = (γ1, . . . , γd) : [a, b]→R
d is assumed to be an L∞-function, and an

easy calculation shows that, in this case, T⋆ : Rd →L∞
µ ([a, b]) is given by

T
⋆λ(x) = 〈λ,γ(x)〉 ∀λ∈R

d.

Fenchel duality will work peacefully under the following qualification assumptions:

(QC) ri (TdomF )∩ ri domg 6= ∅
and (QC⋆) ridomg⋆∩ ri dom(F ⋆ ◦T⋆) 6= ∅.

The effective domain of the dual function D= g⋆ −F ⋆ ◦T⋆ satisfies

domD=domg⋆ ∩ dom(F ⋆ ◦T⋆).

The next theorem will provide us with an explicit relationship allowing for the computation of
a primal solution from the knowlegde of a dual solution, in the case which we just specified,
with suitable assumptions.
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Theorem 3.3. With the notation and assumptions of Theorem 3.1, suppose that (QC) is sat-
isfied, that domD has nonempty interior, F =K is the integral functional of integrand k, that
conjugacy through the integral sign is permitted, that is,

K(u) =

∫

k(u(x), x)dµ(x), K⋆(v) =

∫

k⋆(v(x), x)dµ(x),

and that K⋆⋆ = K and g⋆⋆ = g. Suppose in addition that k⋆(·, x) is differentiable on R, with
derivative k⋆′(·, x). Let λ̄ be a dual solution such that λ̄∈ int domD. If

ū(x) := k⋆′
(

〈λ̄,γ(x)〉, x
)

∈U,

then ū is a primal solution.

Proof. It is readily seen that, since int domD 6= ∅, int domg⋆ and int dom(K⋆ ◦T⋆) have a
nonempty intersection. The condition (QC⋆) is therefore trivially satisfied. From the definition
of ū, it is clear that ū(x)∈ ∂k⋆((T⋆λ̄)(x), x) for every x. Consequently, ū belongs to ∂K⋆(T⋆λ̄).
Moreover,

(K⋆ ◦T⋆) (λ) =

∫

k⋆
(

T
⋆λ(x), x

)

dµ(x) =

∫

k⋆
(

〈λ,γ(x)〉, x
)

dµ(x).

Since the function λ 7→ k⋆(〈λ,γ(x)〉, x) is convex and differentiable, the results in Appendix C
show that integration and the differentiation can be interchanged. We therefore have

∇ (K⋆ ◦T⋆) (λ̄) =

∫

γ(x)k⋆′
(

〈λ̄,γ(x)〉, x
)

dµ(x) =Tū,

and the result then stems from Theorem 3.2.

3.4. Application to Problem (P). We now use the results from the above subsections
to produce a dual strategy for the resolution of problem (P). For any y ∈R and Y ∈R

(p+1)2 , we
define g(y,Y ) :=−δ(y|{1})−‖Y − Ā‖2/(2α). Here, y 7→ δ(y|{1}) denotes the indicator function
of the singleton {1}. Recall that the indicator function of a set S ⊂R

d is defined (on R
d) by

δ(x|S) =
{

0 if x∈ S,
∞ otherwise.

Then problem (P) can be rewritten as

(P)

∣

∣

∣

∣

∣

Min Kµ(u)− g(Tu)

s.t. u∈L1
µ([a, b]).

It is in the form of the primal problem in Theorem 3.1 with F =Kµ. In order to write the dual
problem of (P), we must compute the dual function D := g⋆ −K⋆

µ ◦T⋆. An easy computation
shows that the conjugate of g is given by

g⋆(z,Z) := inf{zy+ 〈Z,Y 〉− g(y,Y )|(y,Y )∈R×R
(p+1)2 }= z+ 〈Z, Ā〉− α

2
‖Z‖2.

Since g is, as can be easily verified, closed proper concave, the biconjugate of g is nothing but
g itself. We now turn to the conjugacy of Kµ. We apply the results of Appendix B, with
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(S,T , µ) the (completion of the) measure space ([a, b],B([a, b]), µ),
Kµ the integral functional with integrand k(u, s) = k◦(u).

It is readily verified that both U =L1
µ([a, b]) and V =L∞

µ ([a, b]) are decomposable, and that the
integrand k◦ is Borel measurable and closed proper convex. Moreover, the convex conjugate k⋆◦
of k◦ is given, via an easy computation, by k⋆◦(τ) = exp(τ −1). Since k◦ is closed proper convex,
we also have that k⋆⋆◦ = k◦. It then follows from the results in Theorem B.2 that

K⋆
µ(v) =

∫

exp(v(x)− 1)dµ(x) for every v ∈L∞
µ ([a, b]), and K⋆⋆

µ =Kµ.

The adjoint T
⋆ : R1+(p+1)2 →L∞

µ ([a, b]) of T is given by

T
⋆(z,Z)(x) = z+ 〈Z,f(x)f(x)⊤〉= z+ 〈f(x),Zf(x)〉,

so that the dual of Problem (P) reads:

(D)

∣

∣

∣

∣

∣

∣

Max D(z,Z) = z+ 〈Z, Ā〉− α

2
‖Z‖2 − exp(z− 1)

∫

exp〈f(x),Zf(x)〉dµ(x)

s.t. (z,Z) ∈R
1+(p+1)2 .

By the strong duality in Theorem 3.1, the dual solution exists. Notice that the effective domain
of the (concave) function D is R

1+(p+1)2 , so that the dual problem () is actually unconstrained
(and finite dimensional). Clearly, D is also continuously differentiable. The first order optimality
condition takes the form of the following system:

(Σ)















0 = 1− exp(z− 1)

∫

exp〈f(x),Zf(x)〉dµ(x),

0 = Ā−αZ − exp(z− 1)

∫

f(x)f(x)⊤ exp〈f(x),Zf(x)〉dµ(x).

Solving for exp(z− 1) in the above system yields the following:

0= Ā−αZ −
(
∫

exp〈f(x),Zf(x)〉dµ(x)
)−1 ∫

f(x)f(x)⊤ exp〈f(x),Zf(x)〉dµ(x).

Observe that the latter system is also the optimality system for the optimization problem:

(D̃)

∣

∣

∣

∣

∣

∣

Max D̃(Z) := 〈Z, Ā〉− α

2
‖Z‖2 − ln

∫

exp〈f(x),Zf(x)〉dµ(x)
s.t. Z ∈R

(p+1)2 .

Proposition 3.1. The above defined function D̃ is concave.

Proof. Clearly, D̃(Z)∈R for every Z ∈R
(p+1)2 . In order to check that D̃ is concave, it suffices

to check the convexity of the function

F : Z 7→ ln

∫

exp〈Z,f(x)f(x)⊤〉dµ(x).
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Let Z1,Z2 ∈ R
(p+1)2 and α ∈ (0,1). Then, p := 1/(1− α) and q := 1/α are Hölder conjugate

numbers, and Hölder’s inequality yields:
∫

exp
〈

(1−α)Z1 +αZ2 , f(x)f(x)
⊤
〉

dµ(x)

=

∫

(

exp
〈

Z1 , f(x)f(x)
⊤
〉)1/p (

exp
〈

Z2 , f(x)f(x)
⊤
〉)1/q

dµ(x)

≤
(
∫

exp
〈

Z1 , f(x)f(x)
⊤
〉

dµ(x)

)1/p(∫

exp
〈

Z2 , f(x)f(x)
⊤
〉

dµ(x)

)1/q

=

(
∫

exp
〈

Z1 , f(x)f(x)
⊤
〉

dµ(x)

)1−α(∫

exp
〈

Z2 , f(x)f(x)
⊤
〉

dµ(x)

)α

.

It follows that

F
(

(1−α)Z1 +αZ2

)

≤ (1−α)F (Z1)+αF (Z2).

Now, since domg = {1}×R
(p+1)2 , domg⋆ =R×R

(p+1)2 and IdomF = [0,∞) it is clear that
(QC) and (QC⋆) always hold. A dual solution may be found by maximizing D̃ (and this is an
unconstrained smooth concave maximization problem). Finally, k⋆(τ,x) = exp(τ − 1) obviously
meets the requirements of Theorem 3.3 and, provided we can solve the dual problem, the primal
solution satisfies,

ū(x) = k⋆′
(

T
⋆(z̄, Z̄)(x), x

)

= exp
(

z̄− 1+ 〈Z̄, f(x)f(x)⊤〉
)

=

(
∫

exp〈f(x), Z̄f(x)〉dµ(x)
)−1

exp〈f(x), Z̄f(x)〉.

Remark 3.1. The entropy problem which we have considered throughout this section is a
relaxed version of the initial one. We stress here that this relaxation is legitimate since, in
essence, letting the relaxation parameter go to zero produces a sequence of solutions which
approximate the solution to the unrelaxed problem, when the latter has a solution. Assume
Ā has a representing measure which is absolutely continuous with respect to µ, so that the
problem

(P0)

∣

∣

∣

∣

Min Kµ(u)
s.t. u∈L1

µ([a, b]), 1= Iu, Ā=Au

has a (unique) solution. Letting ūα := ū denote the solution to the relaxed problem (P) obtained
above, given any sequence (αk) converging to 0, any cluster point

ū∈C := {u ∈L1
µ([a, b])|1 = Iu}

of (uαk
) is an optimal solution to Problem (P0). As a matter of fact, using Appendix B, we may

easily show that Kµ satisfies K⋆⋆
µ =Kµ, so that our functional is actually σ(L1

µ([a, b]),L
∞
µ ([a, b])-

lower semicontinuous. The existence of a solution to each relaxed problem being clear by the
preceding developments, we may then safely apply theorem A.1.
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Remark 3.2. Although in theory the reference measure µ can be chosen arbitarily, in the
numerical section we will only demonstrate how we can infer a measure by using the Lesbegue
measure. Observe that using the Lebesque measure rules out atomic measures, which constitute
an important class of measures. For example for a p-the order polynomial regression model,
it has been shown in [28] that a K-optimal design can be chosen as an atomic measure with
p+1 support points. For a polynomial regression model the entropy optimization approach will
necessarily produce an approximate measure which is absolutely continuous.

4. Chebyshev polynomials. In [28], it was shown that for the p-th order polynomial
regression model on the design space S = [−1,1] as in Example 1.1, the condition number is a
smooth function of the moments and hence the K-optimal design can be solved as a standard
nonlinear programming problem. In this section we consider the K-optimal design problem
with Chebyshev polynomials as basis functions on the design space S = [−1,1]. We show that
for the Chebyshev polynomial model, the condition number is no longer a smooth function of
the moments. It is interesting to note that for the Chebyshev polynomial model, the optimal
condition number is 1 and the analytic solution for the K-optimal design can be obtained. The
result will also be compared with the numerical result from the two stage approach in the next
section.

Chebyshev polynomials of the first kind are defined as follows: T0(x) = 1, T1(x) = x, and

Tn+1(x) = 2xTn(x)−Tn−1(x), n=1,2, . . .

It is obvious that Tn(x) = Tn(−x) for even n and that Tn(x) =−Tn(−x) for odd n. It is also
well-known that

∫ 1

−1

Tn(x)Tm(x)√
1−x2

dx=







0 if n 6=m,
π if n=m= 0,
π/2 if n=m 6= 0.

(9)

Define f0(x) = T0(x) and fj(x) =
√
2Tj(x), j ≥ 1. From (9), we have:

∫ 1

−1

fi(x)fj(x)√
1−x2

dx=

{

0 if i 6= j,
π if i= j.

(10)

If we fit the parametric regression model

y=

p
∑

j=0

θjfj(x)+ ε, x∈ [−1,1], (11)

the information matrix A(ξ) =
∫ 1

−1
f(x)f(x)⊤dξ(x) has several nice properties which we discuss

now.
Define yj =

∫ 1

−1
xj dξ(x) as the j-th moment of the measure ξ, j = 0,1, . . .. The elements of

the information matrix can be written as linear functions of the moments. For example, when
p=2,

A(ξ) =





y0
√
2y1

√
2(2y2− y0)√

2y1 2y2 2(2y3 − y1)√
2(2y2− y0) 2(2y3− y1) 2(4y4− 4y2 + y0)



 (12)

Similarly as in [28, Theorem 2.1], we can show that K-optimal designs for this model may be
chosen to be symmetric about 0.
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As observed in [28], in Example 1.1, the condition number is a smooth function of the
moments. However, in the general case, the condition number κ(A(ξ)) is not a smooth function
of the moments yj . We now give an example that illustrates this nonsmoothness.

For p = 2, consider symmetric designs ξ(x) with y2 = y4 (such a design can be found for
example by taking the support points as −1,0,1). Since y0 = 1 and y1 = y3 = 0 for symmetric
designs, the information matrix in (12) becomes

A(ξ) =





1 0
√
2(2y2 − 1)

0 2y2 0√
2(2y2− 1) 0 2



 .

The three eigenvalues of A(ξ) are

λ1 :=
3+

√

8(2y2− 1)2+1

2
, λ2 := 2y2, λ3 :=

3−
√

8(2y2− 1)2 +1

2
.

The largest eigenvalue λmax is always λ1, and the smallest eigenvalue is

λmin =

{

λ2 if y2 ≤ 1/2,
λ3 otherwise.

The condition number is given by

κ(A) =
λmax

λmin

=



















3+
√

8(2y2− 1)2+1

4y2
if y2 ≤ 1/2,

3+
√

8(2y2− 1)2+1

3−
√

8(2y2− 1)2+1
otherwise.

It is clear from the above formula that the derivative of κ with respect to y2 does not exist at
y2 =1/2.

All in all, we have proved the following result.
Proposition 4.1. For the Chebyshev polynomial model in Equation (11), the minimum of κ(A)
is equal to 1, and the K-optimal design ξ⋆(x) has density

p⋆(x) =
1

π
√
1−x2

, x∈ [−1,1].

5. Numerical results. We now examine computational issues. Recall that our inference
process is divided into two stages:

1. compute the moments of K-optimal designs;
2. from the moments obtained in the first stage, compute a K-optimal design density.
Both stages entail optimization problems of well-known form. In subsection 5.1, the approxi-

mate K-optimal design densities for Chebyshev polynomial model (11) are computed for p= 2,3
and 4, and they are compared with the theoretical density in Proposition 4.1. In Subsection 5.2,
we give two approximate K-optimal design densities for the model in Example 1.1. The results
show that our two stage approach works very well.

In the computation, we select a sequence for α in the following manner: α1 = 0.1, αk = 0.1αk−1

for k ≥ 2 and δ = 10−6. Let Z̄(1) be an approximate minimizer for α = α1 up to the default
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relative tolerance 10−10 of the solver. For k = 1,2 . . . , we use Z̄(k) as the starting value to find

Z̄(k+1) for α= αk+1, and the iteration stops when

‖Z̄(k+1) − Z̄(k)‖1
‖Z̄(k)‖1

< δ.

5.1. K-optimal density functions for Chebyshev polynomial model. Stage 1 Let

t := λmax(A(ξ)), s := λmin(A(ξ)) and A[y0, . . . , y2p] =A(ξ), with yj =
∫ 1

−1
xj dξ(x). Let ui := yi/s,

i= 0,1, . . . ,2p and

B[u0, . . . , u2p] :=
A[y0, . . . , y2p]

s
.

Then the optimization problem under consideration takes the form:

∣

∣

∣

∣

∣

∣

∣

∣

Min v
s.t. I �B � vI,

H(u0, . . . , u2p)� 0,
H(u0, . . . , u2p−2)−H(u2, . . . , u2p)� 0.

Using the SeDuMi code [26], we can get the scaled moments û0, . . . , û2p. Since y0 = 1 necessarily,

the optimal moments are given by

ŷi =
ûi

û0

, i= 1,2, . . . ,2p.

Since K-optimal designs may be chosen to be symmetric, we can set yj = 0 = uj for odd j in

the SDP problem so as to reduce the number of variables in the computation.

Stage 2 Suppose ŷ1, . . . , ŷ2p are obtained in Stage 1. In the optimization problem ,̃ let

f0(x) = T0(x), fj(x) =
√
2Tj(x), j = 1, . . . , p, dµ(x) = dλ(x),

and Ā = A(1, ŷ1, . . . , ŷ2p). Using the routine nlminb in the statistical software R to minimize

−D̃(Z), we can find the minimizer Z̄. Then the estimated density function is given by

ū(x) = c · exp
[

f⊤(x)Z̄f(x)
]

, x∈ [−1,1],

where the constant c is determined to have
∫ 1

−1
ū(x) dx=1.

Table 1 presents some representative results. As α ↓ 0, the numerical results for Z̄ converge.

Figure 1 shows the theoretical density function of the K-optimal design and the estimated

density functions for p= 2,3,4. It is clear that the estimated density functions are very close to

the theoretical one. The approximation gets better as p goes larger. For p= 4, the moments of

the estimated density function are: ŷ1 = 0.000, ŷ2 = 0.5000, ŷ3 = 0.000, ŷ4 = 0.3750, ŷ5 = 0.000,

ŷ6 =0.3125, ŷ7 = 0.000, ŷ8 =0.2734, which are almost the same values as the estimated moments

in Table 1.
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Figure 1. The theoretical K-optimal density and the estimated density functions for the Chebyshev polynomial
model.

Table 1. Results for model (11)

p Estimated moments (stage 1) Matrix Z̄ (stage 2)

2
ŷ1 = 0 ŷ2 =0.5
ŷ3 = 0 ŷ4 =3/8





0.3261 0.0000 0.4045
0.0000 −0.246 0.0000
0.4045 0.0000 0.4090





3
ŷ1 = 0 ŷ2 = 0.5
ŷ3 = 0 ŷ4 = 3/8
ŷ5 = 0 ŷ6 = 5/16









0.2923 0.0000 −0.1754 0.0000
0.0000 0.5951 0.0000 0.4125
−0.1754 0.0000 −0.3942 0.0000
0.0000 0.4125 0.0000 0.2689









4

ŷ1 = 0 ŷ2 =0.5
ŷ3 = 0 ŷ4 =3/8
ŷ5 = 0 ŷ6 =5/16
ŷ7 = 0 ŷ8 =35/128











1.7327 0.0000 1.0270 0.0000 0.6173
0.0000 −1.1505 0.0000 −0.7680 0.0000
1.0270 0.0000 0.2337 0.0000 0.3605
0.0000 −0.7680 0.0001 −0.4401 0.0000
0.6173 0.0000 0.3605 0.0000 0.2001
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5.2. K-optimal density functions for Example 1.1. Using the two stage approach, we
compute the K-optimal design densities for the model in Example 1.1.

Stage 1 Let t := λmax(A(ξ)), s := λmin(A(ξ)) and A(ξ) = H(y0, . . . , y2p), with yj =
∫ 1

−1
xj dξ(x). Let ui := yi/s, i = 0,1, . . . ,2p. Since the information matrix is a Hankel matrix

H(y0, . . . , y2p), the optimization problem under consideration takes the form:

∣

∣

∣

∣

∣

∣

Min v
s.t. I �H(u0, . . . , u2p)� vI,

H(u0, . . . , u2p−2)−H(u2, . . . , u2p)� 0.

The rest is similar to that in Section 5.1 to get ŷ1, . . . , ŷ2p.
Stage 2 In the optimization problem ,̃ let

Z = (Zij)∈R
(p+1)×(p+1), f⊤(x) = (1, x, . . . , xp), dµ(x) = dλ(x),

and Ā=H(1, ŷ1, . . . , ŷ2p). Similar to Section 5.1, we can get the estimated density function ū(x).
Some representative results are reported here for p=3 and p=4. In Stage 1, we get

ŷ2 = 0.3626, ŷ4 =0.2287, ŷ6 = 0.2006

for p=3, and

ŷ2 = 0.3257, ŷ4 =0.2072, ŷ6 =0.1552, ŷ8 = 0.1324

for p= 4 (and moments with odd orders are zero). In Stage 2, the approximate densities are
computed and plotted in Figure 2, where the dots represent the p+ 1 support points of the
discrete K-optimal designs obtained in [28]. It is clear that the density functions approximate
the discrete K-optimal designs well.

6. Concluding Remarks. In this paper, we construct K-optimal designs by finding the
probability distribution of the design variable. The distribution can be discrete or continuous,
supported on the design space S = [a, b], a compact interval. Solving the SDP problem in the
first step gives the K-optimal moments, and the second step finds the probability density that
approximates the true K-optimal design. Note that if the design space S is discretized so that S
includes a set of finitely many points, there are various effective algorithms investigated in the
literature to compute optimal weights for approximate A-optimal, D-optimal and E-optimal
designs. They include the multiplicative algorithm, for example in [18, 7, 9, 27, 29], the interior
point method in [14], the SDP method in [17], and the simulated annealing method in [31].
Some of their algorithms can be applied to compute optimal weights for approximate K-optimal
designs as well. However, this paper does not focus on discrete design spaces.

There are other optimal design criteria studied in the literature, and they include A-optimal,
D-optimal and E-optimal design criteria: for example, see [19, 8]. The two step inference strategy
can be easily applied to find A-optimal and E-optimal designs. In [28], A-optimal andD-optimal
and K−optimal designs are compared for polynomial regression models. They are similar to
each other in terms of the number and the symmetry of support points. However the shape of
the distribution of K-optimal designs is more similar to that of A-otimal designs than D-optimal
designs.



Maréchal, Ye and Zhou: K-optimal design by SDP and entropy optimization

18 Mathematics of Operations Research 00(0), pp. 000–000, c© 0000 INFORMS

−1.0 −0.5 0.0 0.5 1.0

0
2

4
6

8
12

(a)

x

de
ns

ity
 fu

nc
tio

n

−1.0 −0.5 0.0 0.5 1.0

0
2

4
6

8
12

(b)

x

de
ns

ity
 fu

nc
tio

n

Figure 2. K-optimal density functions: (a) p= 3, (b) p=4. The dots represent the p+1 support points of the
discrete K-optimal designs obtained in [28].
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Appendix A: Exterior penalty function method This appendix gives a possibly infi-

nite dimensional version of results which are stated and proved in [1] (Section 9.2) in the finite

dimensional case.

Let U be any topological vector space, let C be a subset of U , let X be any norm space, let

f : U → R̄ be lower semicontinuous, and let h : U →X be continuous.

Consider the constrained optimization problem

(P )

∣

∣

∣

∣

Min f(u)
s.t. u∈C, h(u) = 0,
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as well as the corresponding penalty problem

(Pα)

∣

∣

∣

∣

Min f(u)+α−1‖h(u)‖2
s.t. u∈C.

Let θ(α) = V (Pα) be the optimal value of (Pα), that is,

θ(α) := inf{f(u)+α−1‖h(u)‖2 |u ∈C}.

Lemma A.1. Suppose that, for each α > 0, (Pα) has a solution uα (i.e. uα ∈ C and f(uα) +
α−1‖h(uα)‖2 = θ(α)). Then the following statements hold:

(1) For every u that is feasible for (P ) and every α> 0, f(u)≥ θ(α). Consequently,

V (P ) := inf{f(u)|u∈C, h(u) = 0} ≥ sup{θ(α)|α> 0}.

(2) The function (α 7→ ‖h(uα)‖) is wide-sense increasing, and both (α 7→ f(uα)) and (α 7→
θ(α)) are wide-sense decreasing.

Proof. Let u be feasible for (P ) and let α> 0. Then

f(u) = f(u)+α−1‖h(u)‖2 ≥ inf{f(v)+α−1‖h(v)‖2 |v ∈C}= θ(α).

Statement (1) follows. To show Statement (2), let β > α > 0. Since uα and uβ are solutions
to (Pα) and (Pβ), respectively, we have the following two inequalities:

f(uα)+β−1‖h(uα)‖2 ≥ f(uβ)+β−1‖h(uβ)‖2, (13)
f(uβ)+α−1‖h(uβ)‖2 ≥ f(uα)+α−1‖h(uα)‖2, (14)

from which we deduce that

(β−1 −α−1)(‖h(uα)‖2 −‖h(uβ)‖2)≥ 0.

Since β > α, we obtain ‖h(uα)‖ ≤ ‖h(uβ)‖. Now, combining the latter inequality with (13)
yields f(uα)≥ f(uβ). Finally, adding and subtracting α−1‖h(uα)‖2 to the left hand side of (13)
gives rise to the

θ(α)+ (β−1−α−1)‖h(uα)‖2 ≥ θ(β).

The inequality θ(α)≥ θ(β) follows.

Theorem A.1. Suppose that, for each α> 0, (Pα) has a solution uα. Given any sequence (αk)
converging to 0, suppose that ū ∈ C is a cluster point of (uαk

). Then ū is an optimal solution
to Problem (P) and

f(ū) = V (P ) = inf{f(u)|u∈C, h(u) = 0}= sup{θ(α)|α> 0}= lim
α↓0

θ(α).

Moreover α−1
k ‖h(uαk

)‖2 goes to 0 as k→∞.
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Proof. By Lemma A.1(2), θ(α) is wide-sense decreasing, so that

sup{θ(α)|α> 0}= lim
α↓0

θ(α).

We first show that ‖h(uα)‖ goes to zero as α ↓ 0. Fix ε > 0. We shall prove that, for α sufficiently
small, ‖h(uα)‖ ≤

√
ε. Let u be feasible for (P ) and let u1 be an optimal solution to (P1. Assume

α−1 ≥ ε−1|f(u)−f(u1)|+2. By Lemma A.1(2), we must have f(uα)≥ f(u1). Suppose, in order
to obtain a contradiction, that ‖h(uα)‖2 > ε. By Lemma A.1(1), we have:

inf{f(v)|v ∈C, h(v) = 0} ≥ θ(α) = f(uα)+α−1‖h(uα)‖2
≥ f(u1)+α−1‖h(uα)‖2
> f(u1)+α−1ε
≥ f(u1)+ |f(u)− f(u1)|+2ε
> f(u),

in contradiction with the fact that u is feasible for (P ). Now suppose that uαk
→ ū as k→∞.

Then for all k,

sup{θ(α)|α> 0}≥ θ(αk) = f(uαk
)+

1

αk

‖h(uαk
)‖2 ≥ f(uαk

).

Since f is lower semicontinuous, we deduce that

sup{θ(α)|α> 0} ≥ lim inf
k→∞

f(uαk
)≥ f(ū). (15)

Since ‖h(uαk
)‖2 → 0 as k→∞ by the first part of the proof, the continuity of h shows that we

must have h(ū) = 0. Thus, ū is feasible for (P ). By (15) and Lemma A.1(1), f(ū)≤ V (P ), so
equality holds in fact. Thus ū is an optimal solution to (P ) and

sup{θ(α)|α> 0}= f(ū).

Finally, α−1‖h(uα)‖2 = θ(α)− f(uα), so that

0 ≤ limsup
k→∞

α−1‖h(uαk
)‖2

= limsup
k→∞

(

θ(αk)− f(uk)
)

= lim
k→∞

θ(αk)− lim inf
k→∞

f(uk)

≤ V (P )− f(ū)
= 0,

in which the last inequality stems from the lower semicontinuity of f . The result follows.

The penalty method in Theorem A.1 is only applicable if the iteration sequence (uαk
) has a

cluster point. This can be guaranteed if for example C is compact. In practice if an iteration
sequence does not have a cluster point, we change (αk) to another sequence and try to obtain
a sequence (uαk

) that has a cluster point.
Corollary A.1. If h(uα) = 0 for some α, then uα is an optimal solution to (P ).

Proof. If h(uα) = 0 for some α, then uα is a feasible solution to (P). Furthermore since

inf{f(u) : h(u) = 0, u∈C}≥ θ(α) = f(uα)+α−1‖h(uα)‖2 = f(uα)

it immediately follows that uα is an optimal solution of (P ).
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Appendix B: Conjugacy through the integral sign Let (S,T , µ) be a measure space,
where µ is nonnegative and σ-finite. Let U and V be two spaces of measurable functions on S
such that, for every u∈U and every v ∈ V , the product uv is integrable. We can then define on
U ×V the bilinear form

(u, v) 7−→ 〈u, v〉 :=
∫

u(s)v(s) dµ(s). (16)

A function k : R×S→ R̄ is called an integrand. Its epigraph multifunction is defined on S by

Ek(s) := epik(·, s) = {(u,α) ∈R×R|α≥ k(u, s)}.

The integrand k is said to be:
1. lower semicontinuous, if k(·, s) is lower semicontinuous for all s;
2. normal, if k is lower semicontinuous and Ek is a measurable multifunction;
3. proper, if k(·, s) is proper for every s (a function is proper if it doesn’t take the value −∞

and is not identically equal to ∞);
4. convex, if k(·, s) is convex for every s.
For every measurable function u from (S,T ) to (R,B(R)) (where B(R) denote the Borel

σ-algebra on R), the function s 7→ k(u(s), s) is then measurable from (S,T ) to (R̄,B(R̄)).
See [24], Corollary 2B.

Furthermore, one can define on U the integral functional

u 7−→K(u) :=

∫

k(u(s), s) dµ(s), (17)

where k is a normal integrand. The above integral is well-defined with the convention ∞−∞=
∞. If k(·, s) is convex for every s ∈ S, then K is also convex. See [24], Section 3.

Kullback-Leibler’s relative entropy [11] is a standard example of proper convex integral func-
tional.

For every measurable set T , let 1T denote the characteristic function of T . A space U of
measurable functions is said to be decomposable if it contains all functions of the form

u01T +u1T c

with u0 measurable, µ(T ) finite, u0(T ) bounded and u ∈ U . Here, T c denotes the complement
of T .
Theorem B.1 ([24], Proposition 2S). If k is a normal integrand, then so are its conjugate and
biconjugate integrands.

For every measurable function v ∈ V , the integral
∫

k⋆(v(s), s) dµ(s)

is well-defined (with the convention ∞−∞=∞).
Theorem B.2 ([24], Theorem 3C). Let k be a normal integrand and let K be the corresponding
integral functional. Let U and V be spaces of measurable functions on which one can define the
bilinear form (16). If U is decomposable and if the functional K defined in (17) has a nonempty
domain, then

K⋆(v) =

∫

k⋆(v(s), s) dµ(s)
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for every v ∈ V . Moreover, the functional K⋆ is convex. If in turn V is decomposable and K⋆ has
nonempty domain, then, for every u∈U ,

K⋆⋆(u) =

∫

k⋆⋆(u(s), s) dµ(s).

Appendix C: Differentiation through the integral sign in the convex case Here,
we state and prove a few results on the differentiation under the integral sign in the case of
convex integrands. These results, which can be found in [15], are given here for the sake of
completeness.
Lemma C.1. Let I be an open interval in R and let f : I ×R→R be a mapping. Assume that

(a) for µ-almost every s, f(·, s) is convex and differentiable on I, with derivative denoted by
f ′(λ, s);

(b) for every λ∈ I, f(λ, ·) is integrable.
Then f ′(λ, ·) is integrable for µ-almost every s. Moreover, the function F defined on I by F (λ) =
∫

f(λ, s) dµ(s) is (convex and) differentiable on I, and one has

∀λ∈ I, F ′(λ) =

∫

f ′(λ, s) dµ(s). (18)

L et λ ∈ I and let λ1, λ2, . . . be a sequance in I which converges to λ. then there exists λ−

and λ+ in I such that λ and the λk’s belong to the open interval (λ−, λ+). Let us define

h−(s) :=
f(λ−, s)− f(λ, s)

λ− −λ
, h+(s) :=

f(λ+, s)− f(λ, s)

λ+ −λ
,

and hk(s) :=
f(λk, s)− f(λ, s)

λk −λ
.

It is clear that hk → h := f ′(λ, ·) µ-almost everywhere. By convexity, one also has, for every k,
h− ≤ hk ≤ h+ µ-almost everywhere. Therefore, |hk | ≤ max{|h− |, |h+ |} µ-almost everywhere,
and the right hand side is integrable since h− et h+ are integrable. The Dominated Convergence
Theorem then yields

∫

h(s) dµ(s)= lim
k→∞

∫

hk(s) dµ(s)= lim
k→∞

F (λk)−F (λ)

λk −λ
.

Since the sequence λ1, λ2, . . . was arbitrary, we have shown that F is differentiable, and that its
derivative is given by (18).
Theorem C.1. Let Ω be an open ball in R

d, and let f : Ω×S→R. Assume that
(a) f(·, s) is convex and differentiable (for µ-almost every s) at every λ∈Ω;
(b) f(λ, ·) is integrable for every λ∈Ω.

Then the partial derivatives of f(·, s) are integrable for µ-almost every s. Moreover, the function
defined on Ω by F (λ) =

∫

f(λ, s) dµ(s) is (convex and) differentiable on Ω, and one has

∇F (λ) =

∫

∇f(λ, s) dµ(s). (19)
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L et λ= (λ1, . . . , λd) ∈Ω. Denote f ′
1(λ, s), . . . , f

′
d(λ, s) the partial derivatives of f(·, s) at λ.

From Lemma C.1, F admits at λ partial derivatives F ′
j such that

F ′
j(λ) =

∫

f ′
j(λ, s) dµ(s), j = 1, . . . , d.

Since F is convex, Theorem 25.2 in [21] shows that F is differentiable, and that the gradient
of F is then given by (19).
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