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MINIMIZING THE CONDITION NUMBER TO CONSTRUCT
DESIGN POINTS FOR POLYNOMIAL REGRESSION MODELS∗

JANE J. YE† AND JULIE ZHOU†

Abstract. In this paper we study a new optimality criterion, the K-optimality criterion, for
constructing optimal experimental designs for polynomial regression models. We focus on the pth
order polynomial regression model with symmetric design space [−1, 1]. For this model, we show
that there is always a symmetric K-optimal design with exactly p + 1 support points including the
boundary points −1 and 1. It is well known that the condition number for a positive definite matrix
as the ratio of the maximum eigenvalue to the minimum eigenvalue is usually nonsmooth. We show
that for our model, the condition number of the information matrix is continuously differentiable.
Theoretical K-optimal designs are derived for p = 1 and 2. Numerical results are presented for
3 ≤ p ≤ 10.
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1. Introduction. Many practical and theoretical problems in science and engi-
neering consider the relationship between a response variable and a predictor as a pth
order polynomial regression model:

y = θ0 + θ1x+ θ2x
2 + · · ·+ θpx

p + ε,

where y is the response variable observed at design point x ∈ [−1, 1], θ = (θ0, θ1, . . . ,
θp)

T is the unknown regression parameter vector, and ε is a random error with mean
0 and variance σ2. The functions 1, x, x2, . . . , xp are referred to as regressors.

Suppose that x1, . . . , xn are distinctive design points (or support points) taken
from the design space U := [−1, 1], and ri independent experiment runs have been
carried out at each design point xi, i = 1, . . . , n. Suppose that observations yij , j =
1 . . . , ri were made at the design point xi. The collection of design points and their
probabilities,

ξN =

{
x1, . . . , xn

p1, . . . , pn

}
,

where pi = ri/N and N =
∑n

i=1 ri, is called a design (of the experiment) with sample
size N .

Based on the observations

y11, . . . , y1r1 , . . . , yn1, . . . , ynrn ,

the least squares estimator θ̂ of θ is defined to be

θ̂ = argmin
θ

n∑
i=1

ri∑
j=1

(yij − θT f(xi))
2,
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where f(x)T = (1, x, . . . , xp). Taking the derivative with respect to variable θ and
setting it to zero gives the normal equations

(1) A(ξN )θ̂ = Y,

where

A(ξN ) :=

n∑
i=1

pif(xi)f(xi)
T , Y :=

n∑
i=1

piȳif(xi), ȳi :=
1

ri

ri∑
j=1

yij .

The matrix A(ξN ) is usually called the “information matrix.” If the inverse matrix
A−1(ξN ) exists, then the normal equations (1) yield the unique solution

θ̂ = A−1(ξN )Y,

which gives an explicit expression for the least squares estimator.
Assume that the random errors are uncorrelated. By using the calculation rules

for expected values and variance from probability theory, it is easy to see that the
least squares estimator θ̂ is unbiased and has covariance matrix

Cov(θ̂) =
σ2

N
A−1(ξN ).

Optimal regression design problems in statistics are to find designs such that some
scalar function of the covariance matrix of the least squares estimator is minimized.
Several such minimization criteria have been studied in the optimal design literature;
see, e.g., [8, 9, 22, 24]. For example, D-optimal designs minimize the determinant

of the matrix, det(Cov(θ̂)) and A-optimal designs minimize the trace of the matrix,

trace(Cov(θ̂)). In essence, D-optimal designs minimize the volumes of confidence re-

gions of θ and A-optimal designs minimize the average of the variances of θ̂0, θ̂1, . . . , θ̂p.
In this paper, we use an alternative design criterion to construct regression designs

based on the condition number of the information matrix. Such an optimal design
criterion was proposed and the motivation of studying this criterion was discussed
in [13, 14] but not much work was done. The condition number of a matrix is a
fundamental quantity in the perturbation theory of finite dimensional linear systems;
it measures the sensitivity of a solution to changes in data. Suppose that we wish to
solve a linear system Ax = b, and due to the error we can only have a vector x′ and
a vector b′ for which Ax′ = b′. Then the relative error in taking x′ in lieu of x can
be estimated by

‖x− x′‖
‖x‖ ≤ κ(A)

‖b− b′‖
‖b‖ ,

where κ(A) denotes the condition number of matrix A. For a given design ξN , the

least squares estimator θ̂ is a solution of the normal equations (1). Therefore the
condition number of the information matrix A(ξN ) represents the maximum amount
by which a perturbation in an experimental measurement yij will be transmitted to
the unknown regression parameter vector θ. In order to minimize the error sensi-
tivity, it is desirable to find a design ξN which minimizes the condition number of
the information matrix κ(A(ξN )). In regression analysis, multicollinearity refers to a
situation in which two or more regressors are highly linearly related. Multicollinearity
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is a serious problem in regression analysis. The effects of multicollinearity include (1)
the estimated regression coefficients tend to have large sampling variability, which
implies that the estimated regression coefficients tend to vary widely from one sample
to another; (2) the estimated individual regression coefficients may not be statistically
significant even though a definite statistical relation exists; (3) the interpretation of
regression coefficients is often altered. The condition number is a good measure of
multicollinearity. A large condition number indicates severe multicollinearity (see,
e.g., [19]). Thus it is desirable to minimize the condition number to choose the levels
of regressors to observe the response variable, when we design experiments.

Since the numbers of the experiment runs ri, i = 1, . . . , n, in a design ξN are
positive integers, experimental designs for finite sample size lead to, often intractable,
integer optimization problems. Some of these difficulties could be avoided if one
considers the continuous (or asymptotic) optimal designs to be defined below. Let ξ
be any probability measure on U and we consider a design as a probability measure
ξ. Given a design ξ, define

A(ξ) =

∫
U
f(x)fT (x)dξ(x)

as the information matrix of ξ. If the probability measure is a discrete one concen-
trating on a finite number of support points x1, . . . , xn ∈ U with positive probabilities
p1, . . . , pn, then the information matrix is reduced to

(2) A(ξ) =

n∑
i=1

pif(xi)f
T (xi).

Let μj(ξ) be the jth moment of ξ, i.e.,

μj(ξ) :=

∫
U
xjdξ(x).

Using the moments, the information matrix A(ξ) can be written as

A(ξ) = ( μi+j−2(ξ) )(p+1)×(p+1) =

⎛
⎜⎜⎜⎝

1 μ1(ξ) · · · μp(ξ)
μ1(ξ) μ2(ξ) · · · μp+1(ξ)

...
...

...
μp(ξ) μp+1(ξ) · · · μ2p(ξ)

⎞
⎟⎟⎟⎠ .(3)

In this paper we consider the optimization problem of finding an optimal design
among all designs such that the condition number is minimized. We call such a design
a K-optimal design. We will show that the K-optimal design can be chosen to be
symmetric and have exactly p+ 1 support points which include the boundary points
−1 and 1. Such a K-optimal design ξ can be used to approximate the exact design
ξN and the approximation improves as the sample size N increases.

It is obvious that an information matrix is symmetric and positive semidefinite.
One can then define the condition number of the information matrix (see, e.g., [12])
as

κ(A) =

{
λmax(A)
λmin(A) if λmin(A) > 0,

∞ if λmin(A) = 0,
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where λmax and λmin are the largest and the smallest eigenvalues, respectively. Al-
though not very systematically, the topics of minimizing condition number have been
studied in the literature; see [4, 5, 11, 17, 18, 20] with various models. It is well known
that the condition number of a positive definite matrix may be nonsmooth when ei-
ther the largest or the smallest eigenvalue is not simple. It is a quasi-convex and
pseudoconvex function of the matrix variables but not convex (see [18]). Hence the
problem of minimizing the condition number is usually a nonsmooth and nonconvex
optimization problem and nonsmooth optimization techniques are usually needed to
solve the problem (see, e.g., [5]). Therefore computationally it is a hard optimization
problem. In the case of minimizing the condition number over a convex subset of
symmetric positive definite matrices, it is possible to approximate the problem by a
sequence of convex optimization problems (see [18]), or to transform a linearly and
positive homogeneously parametrized condition number optimization problem with a
positive semidefinite representable constraint set to a convex optimization problem in
the semidefinite programming framework (see [2, 3, 17]). Such convexifying techniques
may be used in our model to find the best moments since the information matrix A(ξ)
depends linearly and positive homogeneously on the moments μ := (μ1, μ2, . . . , μ2p).
However, it can not be used to find the optimal design points xi and corresponding
probabilities pi directly since the information matrix is nonlinearly parametrized in
variables xi and pi.

In this paper, we show that the condition number of the information matrix for
the polynomial regression model with the interval [−1, 1] as the design space is smooth
provided the number of support points is larger than or equal to p+1. Consequently
we can reduce our K-optimal design problem to a smooth optimization problem with
p variables and one linear equality constraint.

Note that numerically there are a few alternative ways to find the least squares
estimator. Suppose n independent experimental runs have been carried out and
x1, . . . , xn are the design points (which may or may not be distinct). Based on the

observations y1, . . . , yn the least squares estimator θ̂ of θ is defined to be

θ̂ = argmin
θ

n∑
i=1

(yi − θT f(xi))
2 = argmin

θ
(y −Xθ)T (y −Xθ)

where

(4) X :=

⎛
⎜⎝

1 x1 x2
1 · · · xp

1
...

...
...

...
1 xn x2

n · · · xp
n

⎞
⎟⎠ , y :=

⎛
⎜⎝

y1
...
yn

⎞
⎟⎠ .

Taking the derivative with respect to variable θ and setting it to zero gives the normal
equations

(5) XTXθ = Xy,

or equivalently

Aθ =
1

n
Xy,

where the information matrix A := 1
nX

TX. Instead of forming the matrix A and
solving the normal equations, one can use the QR factorization or the singular value
decomposition (SVD) to find the least squares estimator. Let ‖·‖ denote the Euclidean
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vector norm and matrix norm. The Euclidean condition number of the retangular
matrix X is defined by [10]

κ(X) = max
y �=0

‖y‖
‖Xy‖ max

z �=0

‖Xz‖
‖z‖ = ‖X‖‖X†‖ =

√
κ(A) =

√
λ1(A)

λp+1(A)
,

where X† = (XTX)−1XT is the Moore–Penrose generalized inverse of X. According
to the above relationship between the condition numbers of X and A, although it
may be numerically more attractive to find the least squares estimator by using QR
factorization or SVD of X , minimizing the condition number of X is the same as
minimizing the condition number of A. Thus, for the rest of the paper, we will
minimize κ(A) to find K-optimal designs, where A is defined as in (3).

The rest of the paper is organized as follows. In section 2, the symmetry of the K-
optimal designs for polynomial regression models is investigated, and in section 3, K-
optimal designs are derived analytically for p = 1 and 2. In section 4, we show that it is
always possible to find discrete symmetric K-optimal designs. In section 5 we discuss
the smoothness of the condition number. In section 6, we show that a symmetric
K-optimal design can be chosen to have exactly p + 1 support points including the
boundary points −1 and 1. In section 7, numerical methods to find symmetric K-
optimal designs are discussed and the results are presented for 3 ≤ p ≤ 10. Section 8
contains the concluding remarks.

2. Symmetry of the K-optimal designs. To study the symmetry of K-
optimal designs, we define two probability distribution functions, ξ1(x) and ξt(x)
(0 ≤ t ≤ 1), as follows. Distribution function ξ1(x) is an image distribution of
ξ(x): for a discrete distribution ξ(x) with support points x1, . . . , xn and probabili-
ties p1, . . . , pn, ξ1(x) is defined to have support points −x1, . . . ,−xn and probabilities
p1, . . . , pn; for a continuous distribution ξ(x) with density function v(x), ξ1(x) is de-
fined to have density function v1(x) = v(−x). If the two distributions ξ(x) and ξ1(x)
are the same, then ξ(x) is a symmetric distribution on [−1, 1]. Distribution function
ξt(x) is a convex combination of ξ(x) and ξ1(x), i.e., ξt(x) = (1 − t)ξ(x) + tξ1(x). It
is easy to verify that ξ0.5(x) is a symmetric distribution on [−1, 1].

Now the moments of distributions ξ, ξt, and ξ1 have the following relationships:

μj(ξ1) = (−1)jμj(ξ), μj(ξt) = (1− t)μj(ξ) + tμj(ξ1), j ≥ 1.

Hence the information matrices satisfy

A(ξ1) = Q A(ξ) Q,(6)

A(ξt) = (1 − t)A(ξ) + tA(ξ1),(7)

where matrix Q is a (p+ 1)× (p+ 1) diagonal matrix with diagonal elements

(−1)0, (−1)1, . . . , (−1)p.

The following theorem on the properties of the condition number is the key result to
study the symmetry of K-optimal designs. For a symmetric matrix A of order p+1,
we use λ1(A) ≥ λ2(A) ≥ · · · ≥ λp+1(A) to denote the real eigenvalues of A being
arranged in nonincreasing order.

Theorem 2.1. If matrix A(ξ) is positive definite, then we have
(i) κ(A(ξ)) = κ(A(ξ1)),
(ii) κ(A(ξt)) ≤ κ(A(ξ)) for all 0 < t < 1.
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Proof. (i) Since A(ξ1) is diagonally similar to A(ξ) by (6), the eigenvalues of
A(ξ1) and A(ξ) are the same. This implies that the largest and smallest eigenvalues
are the same, i.e., λ1(A(ξ1)) = λ1(A(ξ)) and λp+1(A(ξ1)) = λp+1(A(ξ)) > 0, and the
result follows.

(ii) From (7), A(ξt) = (1 − t)A(ξ) + tA(ξ1). Since the largest and the smallest
eigenvalues are convex and concave, respectively, it follows that for all 0 < t < 1,

λ1(A(ξt)) ≤ (1− t)λ1(A(ξ)) + tλ1(A(ξ1)) = λ1(A(ξ)),

λp+1(A(ξt)) ≥ (1− t)λp+1(A(ξ)) + tλp+1(A(ξ1)) = λp+1(A(ξ)) > 0.

Thus

κ(A(ξt)) =
λ1(A(ξt))

λp+1(A(ξt))
≤ λ1(A(ξ))

λp+1(A(ξ))
= κ(A(ξ)).

From Theorem 2.1, the condition number of the information matrix for the sym-
metric distribution (design) ξ0.5 is always less than or equal to the condition number
of the information matrix for distribution ξ, which implies that we can just focus on
symmetric designs to construct K-optimal designs. Thus, for the rest of the paper,
we assume that ξ is symmetric. For a symmetric design, the odd moments are all
zero, i.e., μj(ξ) = 0 for odd j.

3. K-optimal designs for p = 1 and 2. In this section we derive the analytical
solutions for K-optimal designs for polynomial regression models with p = 1 and 2
and compare the results with other classical optimal designs such as D-optimal and
A-optimal designs. For simplicity, we use μj for μj(ξ).

For any distribution on U , it is easy to see that the even moments satisfy

(8) 1 ≥ μ2 ≥ μ4 ≥ μ6 ≥ · · · ≥ 0.

For p = 1, the information matrix A(ξ) =
(
1 0
0 μ2

)
is diagonal, and the two eigenvalues

are λ1(A(ξ)) = 1 and λp+1(A(ξ)) = μ2. Hence minimizing the condition number
κ(A(ξ)) = 1/μ2 is equivalent to maximizing the second moment μ2. Since μ2 ≤ 1
by (8), the maximum value of μ2 is 1 and can be reached by this ξ[1](x) having two
support points x1 = +1 and x2 = −1 with p1 = p2 = 0.5. This K-optimal design
ξ[1](x) is also D-optimal and A-optimal for p = 1; see [22].

For p = 2, the information matrix is

A(ξ) =

⎛
⎝ 1 0 μ2

0 μ2 0
μ2 0 μ4

⎞
⎠ ,

and the three eigenvalues are

λ1(A(ξ)) =
1

2

(
1 + μ4 +

√
(1− μ4)2 + 4μ2

2

)
,

λ2(A(ξ)) = μ2,

λ3(A(ξ)) =
1

2

(
1 + μ4 −

√
(1− μ4)2 + 4μ2

2

)
.

Notice that if (μ2, μ4) is a minimizer then μ2 �= 0 since if μ2 = 0, then μ4 = 0 and
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κ(A(ξ)) = ∞, which is not a minimal condition number. Hence

λ1(A(ξ)) >
1

2

(
1 + μ4 +

√
(1− μ4)2

)
= 1,

μ4 ≤ λ2(A(ξ)) ≤ 1,

λ3(A(ξ)) <
1

2

(
1 + μ4 −

√
(1− μ4)2

)
= μ4.

Therefore λ1(A(ξ)) > λ2(A(ξ)) > λ3(A(ξ)), which implies that the condition number
is

κ(A(ξ)) =
λ1(A(ξ))

λ3(A(ξ))
=

1 + μ4 +
√
(1− μ4)2 + 4μ2

2

1 + μ4 −
√
(1− μ4)2 + 4μ2

2

.(9)

Minimizing κ(A(ξ)) over μ2 and μ4 gives the K-optimal design for p = 2 in the
following theorem.

Theorem 3.1. The condition number in (9) is minimized by design ξ[2](x) having
three support points x1 = −1, x2 = 0, and x3 = +1 with probabilities p1 = 1/6,
p2 = 4/6 and p3 = 1/6, respectively.

Proof. Define two functions

g(μ2, μ4) = (1− μ4)
2 + 4μ2

2,

h(μ2, μ4) = κ(A(ξ)) =
1 + μ4 +

√
g(μ2, μ4)

1 + μ4 −
√
g(μ2, μ4)

.

Taking the partial derivative with respect to μ4 for function h(μ2, μ4) gives

∂h(μ2, μ4)

∂μ4
=

−2g(μ2, μ4)− 2(1− μ2
4)√

g(μ2, μ4)
(
1 + μ4 −

√
g(μ2, μ4)

)2 < 0,

since 0 ≤ μ4 ≤ μ2 ≤ 1. Therefore for any fixed μ2 the condition number is a decreasing
function of μ4. Thus for any fixed μ2, the condition number is minimized at μ4 = μ2.
Now we will find the value of μ2 to minimize h(μ2, μ2). Let ϕ(μ2) := h(μ2, μ2). Then
from

ϕ′(μ2) =
12μ2 − 4√

g(μ2, μ2)
(
1 + μ2 −

√
g(μ2, μ2)

)2 = 0,(10)

we get μ2 = 1/3, and it is easy to check from (10) that μ2 = 1/3 minimizes h(μ2, μ2).
Therefore μ2 = μ4 = 1/3 minimizes the condition number κ(A(ξ)). For ξ[2](x) having
three support points x1 = −1, x2 = 0, and x3 = +1 with probabilities p1 = 1/6,
p2 = 4/6, and p3 = 1/6, respectively, it is easy to verify that μ2(ξ

[2]) = μ4(ξ
[2]) = 1/3.

Thus ξ[2](x) minimizes the condition number.
The three support points of the K-optimal design in Theorem 3.1 are the same

as those of D-optimal and A-optimal designs [22], but the corresponding probabilities
are different. The D-optimal design has p1 = p2 = p3 = 1/3, while the A-optimal
design has p1 = 1/4, p2 = 1/2, and p3 = 1/4. We compare κ(A), det(A), and
trace(A−1) in Table 1. Numerical results are rounded to 3 decimal point. Note that
the D-optimal design maximizes det(A) (equivalently minimizing det(A−1)) and the
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Table 1

Optimal design criteria.

Types of optimal designs κ(A) det(A) trace(A−1)
K-optimal design 5.828 0.074 9
D-optimal design 10.404 0.148 9
A-optimal design 6.854 0.125 8

A-optimal design minimizes trace(A−1). The numerical results are consistent with
the analytical results.

4. Existence of discrete K-optimal designs. For the case of p = 1, 2 in the
previous section, one can find discrete symmetric K-optimal designs. Is this true for
the general case? The answer is given in the following theorem.

Theorem 4.1. One can always find a discrete symmetric K-optimal design which
minimizes the condition number of the information matrix among all probability mea-
sures. Moreover the number of support points is between p+ 1 and 2p+ 2.

Proof. Step 1. First we prove the existence of a K-optimal design. Since the
design space U = [−1, 1] is compact, by the Prohorov theorem [1], the class of all
probability measures on U equipped with weak topology is compact. We denote it
by Θ. Since the map ξ → A(ξ) is linear and bounded and hence continuous on Θ
and the condition number κ(A) is lower semicontinuous on the set of all positive
semidefinite matrices, the map ξ → κ(A(ξ)) is lower semicontinuous on Θ. Therefore
by the Weierstrass theorem, there exists aK-optimal design. Second, we show that the
number of support points for a discreteK-optimal design must be at least p+1. Indeed
from the definition of a condition number, the condition number for a degenerate
semidefinite matrix is positive infinity. Hence for ξ to be a K-optimal design, the
matrix A(ξ) must be positive definite and consequently, the rank of the matrix A(ξ)
must be equal to p+1. By (2), since for a discrete design the matrix A(ξ) is a sum of
rank one matrices of size p+ 1, the number of support points must be at least p+ 1
in order for the rank to be equal to p+ 1.

Step 2. We prove the existence of a discrete symmetric K-optimal design with
the number of support points not more than 2p+2. Define a (p+1)× (p+1) matrix,

(11) W(x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 x2 0 · · ·
0 x2 0 · · ·
x2 0 · · ·
0 · · ·
... 0

0 x2p

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Let ξ denote a symmetric design. Then by the definition of a probability measure and
moments, it is easy to see that

A(ξ) ∈ co {W (x) : −1 ≤ x ≤ 1}
= co {W (x) : −1 ≤ x ≤ 1} ,

where co{S} denotes the convex hull of set S and A denotes the closure of the set A,
and the second equality holds because the set

S = {W (x) : −1 ≤ x ≤ 1}
is compact.
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On the other hand, for any symmetric design ξ, the patterns in the matrix A(ξ)
show that any matrix A(ξ) is completely described by p elements. Consequently, the
set S can be considered as a subset of a p dimensional space. By Caratheodory’s
theorem (see, e.g., [8, Theorem 2.1.1]), any A(ξ) can be represented by a convex
combination of p+1 elements in the set S and hence there exist pi ≥ 0, i = 1, . . . , p+1,

satisfying
∑p+1

i=1 pi = 1 and xi, i = 1, . . . , p+ 1, such that

(12) A(ξ) =

p+1∑
i=1

piW (xi).

In particular if ξ is a discrete K-optimal design, then by Step 1, the number of support
points must be at least p+ 1 and hence all points x1, . . . , xp+1 must be distinct and
all pi, i = 1, . . . , p+ 1, must be positive in the above representation.

Let ξ be a discrete K-optimal design. Suppose that the p + 1 distinctive points
x1, . . . , xp+1 and the positive numbers p1, . . . , pp+1 selected by using Caratheodory’s
theorem are symmetric, i.e.,

ξ =

{
x1, x2, . . . , xm, xm+1,−xm, . . . ,−x2,−x1

p1, p2, . . . , pm, pm+1, pm, . . . , p2, p1

}
,

where xi ∈ [−1, 0), pi ∈ (0, 1], i = 1, . . . ,m, m = 	p+1
2 
 (integer part of (p + 1)/2),

xm+1 = 0, and 2
∑m

i=1 pi+pm+1 = 1. For even p, pm+1 > 0, while for odd p, pm+1 = 0.
Then ξ is a symmetric K-optimal design with p + 1 support points. Now suppose
that the p+ 1 points x1, . . . , xp+1 and the positive numbers p1, . . . , pp+1 selected by
using Caratheodory’s theorem are not symmetric. Then by section 2, one can always
find a symmetric K-optimal design by taking ξ0.5. It is obvious that ξ0.5 is a discrete
symmetric K-optimal design with at most 2p+ 2 support points.

5. Smoothness of the condition number. In this section we aim at showing
that the condition number of the information matrix is continuously differentiable at
(μ2, μ4, . . . , μ2p) which corresponds to a symmetric design with at least p + 1 design
points. As a result, the condition number of the information matrix as a composition
of two smooth mappings is a smooth function of xi and pi in the feasible region of
our optimization problem (P) to be studied numerically in section 7.

Consider the following information matrix for a symmetric design ξ:

Ap+1 := Ap+1(ξ) =

⎛
⎜⎜⎜⎜⎜⎝

1 0 μ2 · · ·
0 μ2 0 · · ·
μ2 0 μ4 · · ·
...

...
. . .

μ2p

⎞
⎟⎟⎟⎟⎟⎠

(p+1)×(p+1)

,

where μj =
∫
U xjdξ(x), j = 2, 4, . . . , 2p are the even moments. By exchanging rows

and columns of Ap+1 at the same time, we obtain a matrix Bp+1 which is a direct
sum of two matrices:

Bp+1 := Ck ⊕Dm =

(
Ck 0
0 Dm

)
,
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where

Ck :=
(
μ2(i+j−2)

)
k×k

=

⎛
⎜⎜⎜⎝

1 μ2 · · · μ2(k−1)

μ2 μ4 · · · μ2k

...
...

...
μ2(k−1) μ2k · · · μ4(k−1)

⎞
⎟⎟⎟⎠

k×k

,

Dm :=
(
μ2(i+j−1)

)
m×m

=

⎛
⎜⎜⎜⎝

μ2 μ4 · · · μ2m

μ4 μ6 · · · μ2m+2

...
...

...
μ2m μ2m+2 · · · μ4m−2

⎞
⎟⎟⎟⎠

m×m

,

and m = 	p+1
2 
, k := p + 1 −m. If p is odd, then k = m = p+1

2 . If p is even, then
k = m+ 1. It is easy to verify that

Bp+1 = QT
p+1Ap+1Qp+1,

where matrix

Qp+1 = (e1, e3, . . . , e(2k−1), e2, e4, . . . , e2m),

and ei is a (p + 1) × 1 unit vector with the ith element being 1. Thus we have the
following result for the eigenvalues of Ap+1 and Bp+1.

Proposition 5.1. Matrices Ap+1 and Bp+1 have the same eigenvalues, i.e.,

λi(Ap+1) = λi(Bp+1), i = 1, . . . , p+ 1.

We say that a square matrix is strictly totally positive if all its minors are positive.
We say that a matrix A is a Hankel matrix if it can be represented as A = (bi+j)

n
i,j=0

for real numbers {b0, . . . , b2n}. The following result characterizes the strictly total
positivity of a Hankel matrix.

Lemma 5.1 (see [21, Theorem 4.4]). A Hankel matrix A is strictly totally positive
if and only if matrix A and its submatrix B obtained by deleting the first column and
the last row are both positive definite.

Proposition 5.2. Let ξ be any given symmetric design with n support points
and

{1, μ2, . . . , μ2p}

be its even moments. If n ≥ p+ 1, then the matrices Ck and Dm are strictly totally
positive, where m = 	p+1

2 
 and k = p+ 1−m.
Proof. Since ξ(x) is a symmetric design with n support points,

Ck =

n∑
i=1

pixix
T
i ,(13)

where xi = (1, x2
i , x

4
i , . . . , x

2(k−1)
i )T , pi > 0,

∑n
i=1 pi = 1. Since xix

T
i , i = 1, . . . , n, are

positive semidefinite matrices and pi are positive, Ck must be positive semidefinite.
In fact we can show that the matrix Ck has full rank k and hence it is positive
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definite. Indeed by the symmetry of the design ξ, there are 	n+1
2 
 distinctive points

x2
i in [−1, 1]. Since n ≥ p+ 1, we have⌊

n+ 1

2

⌋
≥
⌊
p+ 2

2

⌋
=
⌊p
2

⌋
+ 1 = k.

That is, there are no less than k distinctive points x2
i in [−1, 1]. Notice that xix

T
i , i =

1, . . . , n are rank one matrices and p′is are positive. Consequently, pixix
T
i , i = 1, . . . , n

are rank one matrices. Hence by expression (13), matrix Ck is a sum of no less than
k distinctive rank one matrices. Therefore the rank of the matrix is equal to k. We
now show that the matrix Dk−1 is also positive definite. Since ξ(x) is a symmetric
design with n support points, it is easy to verify that

Dk−1 =

n∑
i=1

pix
2
ixix

T
i ,(14)

where xi = (1, x2
i , x

4
i , . . . , x

2(k−2)
i )T , pi > 0,

∑n
i=1 pi = 1. Since xix

T
i , i = 1, . . . , n are

positive semidefinite matrices and pi are positive, Dk−1 must be positive semidefinite.
In fact we can show that the matrix Dk−1 has full rank k − 1 and hence is positive
definite. Indeed by the symmetry of the design ξ, there are at least 	n

2 
 nonzero
distinctive points x2

i in [−1, 1]. Since n ≥ p+ 1,⌊n
2

⌋
≥
⌊
p+ 1

2

⌋
= m ≥ k − 1.

Notice that xix
T
i , i = 1, . . . , n are rank one matrices and p′is are positive. Conse-

quently, pix
2
ixix

T
i are rank one matrices for those i such that x2

i > 0. Hence by
expression (14), matrix Dk−1 is a sum of no less than k − 1 distinctive rank one ma-
trices. Therefore the rank of the matrix Dk−1 is equal to k− 1 and hence the matrix
Dk−1 is positive definite. Dk−1 is the submatrix of Ck deleting the first column and
the last row. Since both matrices Ck and Dk−1 are positive definite, by Lemma 5.1
Ck is strictly totally positive.

It remains to show that the matrix Dm is strictly totally positive. Let

Em−1 :=
(
μ2(i+j)

)
(m−1)×(m−1)

=

⎛
⎜⎜⎜⎝

μ4 μ6 · · · μ2m

μ6 μ8 · · · μ2(m+1)

...
...

...
μ2m μ2(m+2) · · · μ4m−4

⎞
⎟⎟⎟⎠

(m−1)×(m−1)

.

When p is even, k = m+1 and when p is odd, k = m. We have shown that when p is
even, Cm+1 is positive definite and when p is odd, Cm is positive definite. Since Em−1

is the principal submatrix of Cm+1 deleting the first and the last rows and columns
and is the principal submatrix of Cm deleting the first row and the first column, it is
positive definite. Since Em−1 is the submatrix of Dm deleting the first column and
the last row and both matrices Dm and Em−1 are positive definite, Dm is strictly
totally positive by Lemma 5.1.

Proposition 5.3. Let n be the number of support points of the symmetric design
measure ξ. If n ≥ p+ 1, then we have

λ1(Ap+1) = λ1(Ck),

λp+1(Ap+1) =

{
λm(Dm) if p is odd,
λm+1(Cm+1) if p is even.
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Proof. It is clear that

λ1(Ap+1) = λ1(Bp+1) = max(λ1(Ck), λ1(Dm)),

λp+1(Ap+1) = λp+1(Bp+1) = min(λk(Ck), λm(Dm)).

By Proposition 5.2, both Ck and Dm are positive definite.

Since Cm−Dm =
∑n

i=1 pi(1−x2
i )xix

T
i with xi = (1, x2

i , . . . , x
2(m−1)
i )T , it is clear

that Cm−Dm is positive semidefinite. Consequently by [12, Corollary 7.7.4] we have

λ1(Cm) ≥ λ1(Dm),

λm(Cm) ≥ λm(Dm).(15)

Moreover since k ≥ m, by the interlacing theorem [12, Theorem 4.3.8] we have

λ1(Ck) ≥ λ1(Cm),

which implies that λ1(Ap+1) = λ1(Ck).
When p is an odd number, k = m = p+1

2 . Then we have

λp+1(Ap+1) = λp+1(Bp+1) = min(λm(Cm), λm(Dm)) = λm(Dm),

where the third equation follows by (15).
When p is an even number, k = m+ 1, and we have Bp+1 = Cm+1 ⊕Dm. Since

Em is the principle submatrix of Cm+1 by deleting the first row and the first column,

λm+1(Cm+1) ≤ λm(Em),

by the interlacing theorem [12, Theorem 4.3.8]. In addition, it is easy to verify that
Dm −Em is positive semidefinite, which implies

λm(Dm) ≥ λm(Em).

Thus λp+1(Ap+1) =λp+1(Bp+1) =min{λm+1(Cm+1), λm(Dm)}=λm+1(Cm+1).
We now prove the main result of this section.
Theorem 5.1. The largest eigenvalue and the smallest eigenvalue of Ap+1 are

smooth at (μ2, . . . , μ2p) which correspond to a symmetric design ξ with at least p+ 1
support points. Consequently the condition number κ(Ap+1) is smooth at (μ2, . . . , μ2p)
which corresponds to a symmetric design ξ with at least p+ 1 support points.

Proof. Let μ2, . . . , μ2p correspond to a symmetric design ξ with at least p + 1
support points. Since Ck and Dm are totally positive matrices by Proposition 5.2,
all eigenvalues are positive and simple. Therefore λ1(Ck), λk(Ck), and λm(Dm) are
continuously differentiable at (μ2, . . . , μ2p). Consequently by Proposition 5.3, the
largest eigenvalue and the smallest eigenvalue of Ap+1 are continuously differentiable
at (μ2, . . . , μ2p) as well, which implies that the condition number κ(Ap+1) is contin-
uously differentiable at (μ2, . . . , μ2p).

6. Support points of K-optimal designs. For the cases of p = 1 and 2 in
section 3, one can find symmetric K-optimal designs that have exactly p+ 1 support
points and the boundary points −1 and +1 are included. Is this true for the general
case? The positive answer is given in this section. First we need the following technical
result.

Lemma 6.1. Suppose that the number of support points n ≥ p+1. Then κ(Ap+1)
is a nonincreasing function of μ2p when all other moments are fixed.
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Proof. Case 1: p is odd. In this case since k = m = p+1
2 , we have Bp+1 =

Cm ⊕Dm. By Proposition 5.3 we have

κ(Ap+1) =
λ1(Cm)

λm(Dm)

and μ2p is only in matrix Dm. By Proposition 5.2, Dm is a strictly total positive
matrix and hence all eigenvalues are simple and positive. Consequently the function
λm(Dm) is a smooth function of Dm and hence a smooth function of variable μ2p.
Denote by λmin(μ2p) the smallest eigenvalue of Dm with all moments other than μ2p

fixed. Since by the Rayleigh–Ritz theorem [12, Theorem 4.22],

λmin(μ2p) = λm(Dm) = min
‖x‖=1

xTDmx

and the minimum is achieved by the unit eigenvector for λm(Dm), by the Danskin’s
theorem stated on p. 99 of [6] (also see [7]), we have

λ′
min(μ2p) = (xmin

m )2,

where xmin
m denotes the last component of the unit eigenvector xmin for the smallest

eigenvalue λm(Dm). Let κ(μ2p) := λ1(Cm)
λm(Dm) with all moments other than μ2p fixed.

Then

κ′(μ2p) = − λ1(Cm)

λ2
min(μ2p)

λ′
min(μ2p) ≤ 0.

Case 2: p is even. In this case since m = 	p+1
2 
 = p

2 and k = m + 1, we have
Bp+1 = Cm+1 ⊕Dm. By Proposition 5.3 we have

κ(Ap+1) = κ(Cm+1) =
λ1(Cm+1)

λm+1(Cm+1)
.

and μ2p is included in the matrix Cm+1. By Proposition 5.2, Cm+1 is a strictly total
positive matrix and hence all eigenvalues are simple and positive, i.e.,

λ1(Cm+1) > λ2(Cm+1) > · · · > λm+1(Cm+1).

Hence the functions

λmax(μ2p) := λ1(Cm+1), λmin(μ2p) := λm+1(Cm+1), κ(μ2p) := κ(Cm+1)

(with all moments other than μ2p fixed) are smooth functions of μ2p. By the quotient
rule, we have

κ′(μ2p) =
λ′
max(μ2p)λmin(μ2p)− λmax(μ2p)λ

′
min(μ2p)

λ2
min(μ2p)

.

Since by the Rayleigh–Ritz yheorem [12, Theorem 4.22],

λmax(μ2p) = max
‖x‖=1

xTCm+1x, λmin(μ2p) = min
‖x‖=1

xTCm+1x,

and the maximum and the minimum is achieved by the unit eigenvector for λ1(Cm+1)
and λm+1(Cm+1), respectively, by Danskin’s theorem we have

λ′
max(μ2p) = (xmax

m+1)
2, λ′

min(μ2p) = (xmin
m+1)

2,
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where xmin
m+1 and xmin

m+1 denote the last component of the unit eigenvector xmax for
the largest eigenvalue λ1(Cm+1) and xmin for the smallest eigenvalue λm+1(Cm+1),
respectively. To prove the result it suffices to show that (xmax

m+1)
2 ≤ (xmin

m+1)
2. Since the

matrix Cm+1 is a positive matrix, by the Perron–Frobenius theorem, the eigenvector
corresponding to the largest eigenvalue has strictly positive components and hence
xmax
i > 0, i = 1, . . . ,m+ 1. Since Cm+1x = λmaxx and

1 > μ2 > μ4 > · · · > μ4m,

it is obvious that we have

λmaxx
max
1 > λmaxx

max
2 > · · · > λmaxx

max
m+1

which implies that

xmax
1 > xmax

2 > · · · > xmax
m+1.

Moreover since xmax is a unit vector, we have (xmax
m+1)

2 < 1
m+1 . It remains to show

that (xmin
m+1)

2 > 1
m+1 . The equation

xTCm+1x = λmin

represents an m + 1 dimensional ellipsoid and the unit eigenvector corresponding to
λmin is a solution to the above equation. Moreover since xmin is a minimizer for the
problem

min
‖x‖=1

xTCm+1x,

it is the vertex with the longest radius of the ellipsoid. Since the intercepts of the
ellipsoid with the x1, . . . , xm+1 axes are

±

⎛
⎜⎜⎜⎝

√
λmin

0
...
0

⎞
⎟⎟⎟⎠ ,±

⎛
⎜⎜⎜⎝

0√
λmin

μ4

...
0

⎞
⎟⎟⎟⎠ . . . ,±

⎛
⎜⎜⎜⎝

0
0
...√

λmin

μ4m

⎞
⎟⎟⎟⎠

and 1 > μ4 > · · · > μ4m, the intercept of the ellipsoid with the xm+1 axis is the
largest one. Hence |xmin

m+1| is larger than any of the quantities |xmin
m |, . . . , |xmin

1 | which
implies that (xmin

m+1)
2 > 1

m+1 since xmin is a unit vector. Therefore we have shown

that (xmax
m+1)

2 < (xmin
m+1)

2. Consequently we have

x2
maxλmin(μ2p) < x2

minλmax(μ2p)

which implies that

λ′
max(μ2p)λmin(μ2p)− λmax(μ2p)λ

′
min(μ2p) < 0.

Therefore κ′(μ2p) < 0.
Theorem 6.1. One can always find a symmetric K-optimal design with p + 1

support points which include the boundary points −1 and 1.
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Proof. The case p = 1, 2 was proved in section 3. We now show the result
for the case p ≥ 3. Consider the moment space generated by the power functions
ui(x) = x2i, i = 0, 1, . . . , p on the interval [0, 1]:

Mp+1 :=

{
c = (c0, c1, c2, . . . , cp) : cj =

∫ 1

0

x2jdσ(x) j = 0, 1, . . . , p, σ ∈ Ξ

}
,

where Ξ denotes the set of all nondecreasing right continuous functions of bounded
variation on the interval [0, 1]. By Theorem 4.1, one can find a symmetric K-optimal

design with at least p + 1 support points. Let ξ̂ be a symmetric K-optimal design
with q ≥ p+ 1 support points and μ̂ = (1, μ̂2, . . . , μ̂2p) be the even moments of order

up to 2p corresponding to ξ̂ and ĉ := μ̂
2 .

Case 1: ĉ = (ĉ0, ĉ1, . . . , ĉp) is a boundary point of Mp+1. It is easy to verify
that the moment space is a closed convex cone (see, e.g., [15, Theorem II 1.1]). By
the convex separation theorem, there is a supporting hyperplane passing through the
origin. Hence one can find scalars a0, a1, . . . , ap not all zero such that

p∑
j=0

aj ĉj = 0,(16)

p∑
j=0

ajcj ≥ 0 for all c ∈ Mp+1.(17)

Define u(x) :=
∑p

j=0 ajx
2j . Suppose that q is even. Then since 0 is not a support

point, the symmetric design ξ̂ has l = q
2 nonnegative support points 0 < x̂1 < · · · < x̂l

with positive probabilities p̂1, . . . , p̂l. By (16), we have

(18) 0 =

p∑
j=0

aj

(
l∑

i=1

p̂ix̂
2j
i

)
=

l∑
i=1

p̂i

⎛
⎝ p∑

j=0

aj x̂
2j
i

⎞
⎠ =

l∑
i=1

p̂iu(x̂i).

Since for any 0 ≤ x ≤ 1,

(1, x2, x4, . . . , x2p) ∈ Mp+1

by (17) we have u(x) ≥ 0 for all 0 ≤ x ≤ 1 and hence (18) implies that u(x̂i) =
0, i = 1, . . . , l. Let y = x2 and consider the function, φ(y) :=

∑p
j=0 ajy

j . Since φ(y)
is a polynomial of order less than or equal to p there are at most p zeros. Since
u(x) = φ(x2), we conclude that there are at most p nonnegative zeros for u(x).
However since u(x) ≥ 0, x ∈ [0, 1], all zeros for u(x) in the interval (0, 1) must have
multiplicity at least two and hence u(x) has at most 	p

2
 distinctive zeros in the open
interval (0, 1). Since q

2 > 	p
2
, the boundary 1 must be included as a support point.

Moreover since there are at most 	p
2
 distinctive zeros for u(x) in (0, 1) and the support

points must be roots of u(x), the number of support points in (0, 1] must be equal to
q
2 = 	p

2
+ 1. Furthermore, since the degree p has to be at least the number of roots
(counting multiplicity), we must have p ≥ 2	p

2
 + 1, meaning that p has to be odd.
Suppose now that q is odd. Then 0 must be a support point and hence the symmetric
design ξ̂ has l = q−1

2 support points on (0, 1]. Moreover since 0, as a support point,

is now a root of u(x), counting multiplicity, u(x) has at most 	p−1
2 
 distinctive roots

in (0, 1). Since q−1
2 > 	p−1

2 
, the boundary 1 must be included as a support point.
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Moreover since there are at most 	p−1
2 
 distinctive zeros for u(x) in (0, 1) and the

support points must be roots of u(x), the number of support points in (0, 1] must be
equal to q−1

2 = 	p−1
2 
 + 1. Furthermore, since the degree p has to be at least the

number of roots (counting multiplicity), we must have p ≥ 2	p−1
2 
+ 2, meaning that

p has to be even. Combining the even and the odd cases we have shown that if ĉ is
a boundary point of Mp+1 then the support points of the design ξ̂ are exactly equal
to p+ 1 and the boundary points −1, 1 are included.

Case 2: ĉ is an interior point of Mp+1. In this case, ξ̂ itself may not have
the desired property. We now show that we can always find another symmetric K-
optimal design that has the desired property. Since ĉ is an interior point of Mp+1,
(ĉ0, ĉ1, . . . , ĉp−1) must be an interior point of Mp. Consider the set which has the
same moments with the moment ĉ up to the order p− 1, i.e.,

V (ĉ) :=

{
σ ∈ Ξ : ĉj =

∫ 1

0

x2jdσ(x) j = 0, 1, 2, . . . , p− 1

}
.

Let

γ̄ := max
σ∈V (ĉ)

∫ 1

0

x2pdσ(x)

and σ̄ denote the maximizer. Then the corresponding moment point

c̄ = (ĉ0, ĉ1, . . . , ĉp−1, γ̄)

is a boundary point of Mp+1. Suppose that ξ̄ is the symmetric measure on [−1, 1]

corresponding to σ̄. Since the matrix Ap+1(ξ̂) is positive definite (due to the fact that

ξ̂ is a K-optimal design), the matrixAp+1(ξ̄) is positive definite as well. Consequently,
the number of support points for ξ̄ is at least p+1. Let the index I(c̄) of a point c̄ in
Mp+1 be the minimal number of points in

{(1, x2, . . . , x2p)|0 ≤ x ≤ 1}
that span c̄ under the special convention that (1, x2, x4, . . . , x2p) for x = 0 and
(1, x2, x4, . . . , x2p) for x = 1 counted as half points, while (1, x2, x4, . . . , x2p) for
0 < x < 1 received a full count. Since c̄ is a boundary point of Mp+1, by [15,
Theorem II 2.1]) I(c̄) < p+1

2 , i.e., I(c̄) ≤ p
2 . On the other hand since (ĉ0, ĉ1, . . . , ĉp−1)

is an interior point of Mp, by [15, Theorem II 2.1]) I(ĉ0, ĉ1, . . . , ĉp−1) ≥ p
2 . Conse-

quently I(c̄) = p
2 . When p is even I(c̄) = p

2 is an integer and hence either both 0
and 1 are included or not included. But since the number of support points for ξ̄ is
at least p+ 1 and the index is p

2 , both 0 and 1 must be included and the number of
support points must be p+ 1. When p is odd, I(c̄) is not an integer and hence only
one of the end points 0, 1 is included. Since the number of support points for ξ̄ is
at least p + 1, 1 must be included and the number of support points must be p + 1.
Hence combining the even and the odd cases we conclude that the number of support
points of ξ̄ is exactly equal to p+1 and the boundary points −1, 1 are included in the
support points. By Lemma 6.1, κ(Ap+1) is a nonincreasing function of μ2p and when
the other moments are fixed we have

κ(Ap+1(ξ̄)) ≤ κ(Ap+1(ξ̂)).

That is, ξ̄ is a symmetric K-optimal design with p + 1 support points which include
−1, 1.
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7. Numerical algorithms and results. It is difficult to derive K-optimal de-
signs analytically for general p. In this section, we explain how the results in the
previous sections can be used in finding numerical solutions, and the solutions for
symmetric K-optimal designs for p = 3, . . . , 10 are presented and compared with
D-optimal and A-optimal designs. Two numerical algorithms are presented and dis-
cussed here. Algorithm I computes the support points and their probabilities directly,
while Algorithm II computes the moments μ2, . . . , μ2p first and then finds the support
points and their probabilities.

7.1. Algorithm I. By Theorem 6.1, any K-optimal design can be realized by a
symmetric K-optimal design with exactly p+1 support points including the boundary
points. By Theorem 5.1, the condition number is smooth if there are at least p + 1
support points. These results allow us to simplify the problem with the minimal
number of unknown variables.

A symmetric design with p+ 1 support points including the boundary points −1
and 1 can be represented by

ξK =

{
1, x2, . . . , xm, xm+1,−xm, . . . ,−x2,−1
p1, p2, . . . , pm, pm+1, pm, . . . , p2, p1

}
,

where xi ∈ (0, 1) (i = 2, . . . ,m), pi ∈ (0, 1] (i = 1, . . . ,m), m = 	p+1
2 
, xm+1 = 0, and

2
∑m

i=1 pi + pm+1 = 1. For even p, pm+1 > 0, while for odd p, pm+1 = 0.
Let w = (x2, . . . , xm, p1, . . . , pm+1). Then the information matrix can be written

as a function of w:

A(w) = 2

[
p1W(1) +

m∑
i=2

piW(xi)

]
+ pm+1W(0),

where matrix W(x) is defined in (11). Our optimization problem becomes

(P ) min
w

z(w) := κ(A(w))

s.t. x2, . . . , xm ∈ (0, 1),

p1, . . . , pm+1 ∈ (0, 1],

2

m∑
i=1

pi + pm+1 = 1,

where for odd p, pm+1 = 0. Note that since when the support points are fewer than
p + 1 the condition number will become infinity, the optimal design points of the
problem (P) will be always distinct. By Theorem 5.1, κ(A) is a smooth function of
the moments μ2, . . . , μ2p when the number of support points is equal to p+1. Since the
moments are smooth functions of w, the objective function z(w) is a smooth function
of w on the feasible region of the problem (P) as a composition of two smooth functions
w → μ and μ → κ(A). Many software programs have an optimization toolbox that
can be used for the above problem when p is small. In the computation, we find that
it is easier to use objective function κ(A(w))1/(p+1) than to use κ(A(w)), since the
search algorithm converges faster.

7.2. Algorithm II. As suggested by one of the referees, we can also use SeDuMi
in [23] to solve the K-optimal design problem in the following two steps.
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Step 1: Minimize κ(Ap+1) over μ2, . . . , μ2p subject to a constraint on the moments
μ2, . . . , μ2p. The minimization problem can be transformed to a semidefi-
nite programming problem which can be solved by the SeDuMi algorithm in
MATLAB software. Let

s =
λ1(Ap+1)

λp+1(Ap+1)
, uj =

μj

λp+1(Ap+1)
, j = 0, 1, . . . , 2p,

Up+1 = (ui+j−2)(p+1)×(p+1) =
1

λp+1(Ap+1)
Ap+1, Vp = (ui+j)p×p ,

where μ0 = 1 and μj = 0 for odd j. It is obvious that λ1(Up+1) = s
and λp+1(Up+1) = 1. The constraint on the moments μ2, . . . , μ2p is, from
[16, Theorem 5.39], Up−Vp 
 0 (positive semidefinite). Then the minimiza-
tion problem becomes a semidefinite programming problem as follows:

min
s,u0,u2,...,u2p

s

s.t.

⎛
⎝ Up −Vp 0 0

0 s I−Up+1 0
0 0 Up+1 − I

⎞
⎠ 
 0.

Use the SeDuMi algorithm to find the minimizer: ŝ, û0, û2, . . . , û2p, and the
corresponding moments are given by μ̂j = ûj/û0, j = 2, . . . , 2p.

Step 2: Find design points x2, . . . , xm and probabilities p1, p2, . . . , pm, pm+1 to match
the moments μ̂2, . . . , μ̂2p obtained in Step 1. Notice the relationship between
the distribution and the moments,

2p1 + 2

m∑
i=2

xj
ipi = μ̂j , j = 2, . . . , 2p,

2
m∑
i=1

pi + pm+1 = 1.

7.3. Numerical results. Using Algorithm I, we can easily obtain the numerical
results for the K-optimal designs for small p, and some representative results are
presented in Table 2. Numerical results from Algorithm II are consistent with those
in Table 2. For example, when p = 3, using the SeDuMi algorithm we get μ̂2 = 0.3626,
μ̂4 = 0.2287, and μ̂6 = 0.2006, and the design points and probabilities in Table 2 give
the same values for these moments. The numerical results for 3 ≤ p ≤ 10 and the
theoretical results for p = 1 and 2 indicate that the K-optimal designs are unique
with respect to the moments.

D-optimal and A-optimal designs can be found in [22]. To compare the K-optimal
designs with D-optimal and A-optimal designs, we can plot the support points and
their probabilities. A representative plot is given in Figure 1 for p = 4. It is very
interesting to notice that the support points are almost the same for the three optimal
designs, but the probabilities are different. The probabilities of K-optimal designs are
similar to those of A-optimal designs, while the probabilities of D-optimal designs are
constant over the support points.

Although the distributions of D-optimal, A-optimal, and K-optimal designs are
different, they are similar to each other in the following ways:
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Table 2

Numerical results for K-optimal designs for pth order polynomial regression models, 3 ≤ p ≤ 10.
Since the designs are symmetric, only nonnegative support points (rounded to 3 decimal points) are
listed here with probabilities in the brackets.

p K-optimal design κ(A)1/(p+1)

3 0.458 1.0
(0.403) (0.097) 2.327671

4 0.0 0.663 1.0
(0.405) (0.240) (0.057) 2.76018

5 0.286 0.779 1.0
(0.303) (0.153) (0.044) 3.073318

6 0.0 0.469 0.841 1.0
(0.292) (0.219) (0.104) (0.031) 3.341160

7 0.209 0.594 0.884 1.0
(0.241) (0.156) (0.077) (0.026) 3.549046

8 0.0 0.362 0.679 0.909 1.0
(0.229) (0.192) (0.116) (0.058) (0.020) 3.731495

9 0.165 0.478 0.742 0.929 1.0
(0.198) (0.149) (0.088) (0.047) (0.018) 3.879493

10 0.0 0.295 0.565 0.788 0.942 1.0
(0.188) (0.167) (0.118) (0.069) (0.038) (0.014) 4.011976

0.
0

0.
2

0.
4

0.
6

support points

pr
ob

ab
ili

ty

−1
−0.663

0
0.663

1

A−optimal
K−optimal
D−optimal

Fig. 1. K-optimal, D-optimal, and A-optimal designs for p = 4.

(1) They are all symmetric.
(2) They all have p+ 1 support points.
(3) For each p, the p+1 support points of K-optimal design are almost the same as

those of D-optimal design or A-optimal design.
(4) The distribution of K-optimal design is closer to that of A-optimal design than

D-optimal design.
Therefore K-optimal designs can enjoy some of the good properties of A-optimal or D-
optimal designs and at the same time they are numerically more stable when solving
the normal equations to obtain the least squares estimator.

8. Conclusions. The K-optimal criterion based on the condition number of the
information matrix is introduced to constructK-optimal designs for regressionmodels.
The K-optimal designs are very useful in statistical analysis, since they can reduce
the variance inflation factor and the error sensitivity for the least squares estimator.
We have focused on the polynomial regression models in this paper; however, the K-
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optimal criterion can be applied to any regression models. Theoretical properties ofK-
optimal designs, such as symmetry and the number of support points, are investigated
and obtained.

The theoretical distributions of the K-optimal designs are obtained for p = 1, 2,
but they are hard to derive for p ≥ 3. Since we can prove that the condition number
of the information matrix is a smooth function of the moments and the optimization
problem can be transformed to a semidefinite programming problem, two numerical
algorithms are proposed to compute K-optimal designs. The numerical results indi-
cate that the K-optimal designs are unique with respect to the moments. In addition,
the K-optimal designs are similar to A-optimal designs for the polynomial regression
models.

An interesting research problem in the future is to study K-optimal designs for
other regression models, such as polynomial regression models with other bases and
multiple regression models. In addition, the condition number can be a useful measure
to compare various models and to do model selection by avoiding mulicollinearity. The
two numerical algorithms proposed in section 7 are efficient to find K-optimal designs
for small p, but it is still challenging to design effective algorithms for large p.
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