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SMOOTHING SQP METHODS FOR SOLVING DEGENERATE
NONSMOOTH CONSTRAINED OPTIMIZATION PROBLEMS WITH
APPLICATIONS TO BILEVEL PROGRAMS*

MENGWEI XU, JANE J. YE!, AND LIWEI ZHANG#

Abstract. We consider a degenerate nonsmooth and nonconvex optimization problem for which
the standard constraint qualification such as the generalized Mangasarian—-Fromovitz constraint qual-
ification (GMFCQ) may not hold. We use smoothing functions with the gradient consistency property
to approximate the nonsmooth functions and introduce a smoothing sequential quadratic program-
ming (SQP) algorithm under the I penalty framework. We show that any accumulation point of a
selected subsequence of the iteration sequence generated by the smoothing SQP algorithm is a Clarke
stationary point, provided that the sequence of multipliers and the sequence of penalty parameters
are bounded. Furthermore, we propose a new condition called the weakly generalized Mangasarian—
Fromovitz constraint qualification (WGMFCQ) that is weaker than the GMFCQ. We show that the
extended version of the WGMFCQ guarantees the boundedness of the sequence of multipliers and
the sequence of penalty parameters and thus guarantees the global convergence of the smoothing
SQP algorithm. We demonstrate that the WGMFCQ can be satisfied by bilevel programs for which
the GMFCQ never holds. Preliminary numerical experiments show that the algorithm is efficient for
solving degenerate nonsmooth optimization problems such as the simple bilevel program.
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1. Introduction. In this paper, we consider the constrained optimization prob-
lem of the form

(P) min  f(zr)
st. gi(z) <0,i=1,...,p,
hj(z) =0, j=p+1,...,q,

where the objective function and constraint functions f,g; (i = 1,...,p), h;j (j =
p+1,...,9) : R" — R are locally Lipschitz. In particular, our focus is on solving
a degenerate problem for which the generalized Mangasarian—Fromovitz constraint
qualification (GMFCQ) may not hold at a stationary point.

The sequential quadratic programming (SQP) method is one of the most effective
methods for solving smooth constrained optimization problems. For the current iter-
ation point zy, the basic idea of the SQP method is to generate a descent direction
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dy. by solving the following quadratic programming problem:
1
min Vf(xp)Td+ §dTWkd

s.t. gi(zk) + Vgi(xk)Td <0,i=1,...,p,
hJ(xk)_FVhJ(xk)Td:Oa j:p+177Qa

where V f(x) denotes the gradient of function f at x and Wy is a symmetric positive
definite matrix that approximates the Hessian matrix of the Lagrangian function.
Then dj, is used to generate the next iteration point: xy4; := xx + airdy, where the
stepsize oy, is chosen to yield a sufficient decrease of a suitable merit function. The
SQP algorithm with aj = 1 was first studied by Wilson in [44], where the exact
Hessian matrix of the Lagrangian function was used as Wj. Garcia-Palomares and
Mangasarian [19] proposed to use an estimate to approximate the Hessian matrix. Han
[21] proposed to update the matrix W}, by the Broyden—Fletcher—Goldfarb—Shanno
(BFGS) formula. When the stepsize a, = 1, the convergence is only local. To
obtain a global convergence, Han [22] proposed to use the classical 1 penalty function
as a merit function to determine the step size. While the [; penalty function is not
differentiable, the authors of [36] suggested using the augmented Lagrangian function,
which is a smooth function as a merit function. The inconsistency of the system of the
linearized constraints is a serious limitation of the SQP method. Several techniques
have been introduced to deal with the possible inconsistency. For example, Pantoja
and Mayne [35] proposed to replace the standard SQP subproblem by the following
penalized SQP subproblem:

1
r{ilifn Vf(a:k)Td + EdTWkd + rpé

s.t. gi(zk) + Vgi(xk)Td <& i=1,...,p,
—& < hj(xe) + Vh(zp)d <& j=p+1,....q,
£€>0,

where the penalty parameter r; > 0. Unlike the standard SQP subproblem which
may not have feasible solutions, the penalized SQP subproblem is always feasible.
Other alternative methods for inconsistency of the SQP method are also presented
[3, 17, 20, 29, 40, 41, 50]. For nonlinear programs which have some simple bound
constraints on some of the variables, Heinkenschloss [23] proposed a projected SQP
method which combines the ideas of the projected Newton methods and the SQP
method.

Recently Curtis and Overton [12] pointed out that applying SQP methods di-
rectly to a general nonsmooth and nonconvex constrained optimization problem will
fail in theory and in practice. They employed a process of gradient sampling (GS)
method to make the search direction effective in nonsmooth regions and proved that
the iteration points generated by the SQP-GS method converge globally to a station-
ary point of the penalty function with probability one. A smoothing method is a
well-recognized technique for numerical solution of a nonsmooth optimization prob-
lem. Using a smoothing method, one replaces the nonsmooth function by a suitable
smooth approximation, solves a sequence of smooth problems, and drives the approx-
imation closer and closer to the original problem. The fundamental question is as
follows: What property should a family of the smoothing functions have in order for
the stationary points of the smoothing problems to approach a stationary point of
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the original problem? In most of the literature, a particular smoothing function is
employed for the particular problem studied. It turns out that not all smooth approx-
imations of the nonsmooth function can be used in the smoothing technique to obtain
the desired result; an example for which the smoothing method fails to converge with
almost all initial points was given by Kummer [26]. Zhang and Chen [49] (see also
the recent survey on the subject by Chen [8]) identified the desired property as the
gradient consistency property. Zhang and Chen [49] proposed a smoothing projected
gradient algorithm for solving optimization problems with a convex set constraint
by using a family of smoothing functions with the gradient consistency property to
approximate the nonsmooth objective function. They proved that any accumulation
point of the iteration sequence is a Clarke stationary point of the original nonsmooth
optimization problem. Recently [27, 45] extended the result of [49] to a class of non-
smooth constrained optimization problems using the projected gradient method and
the augmented Lagrangian method, respectively. Smoothing functions were proposed
and the SQP method was used for the smooth problem in [18, 25] to solve the mathe-
matical programs with complementarity constraints (MPCC) and in [28, 42] to solve
the semi-infinite programming (SIP). In this paper we will combine the SQP method
and the smoothing technique to design a smoothing SQP method for a class of general
constrained optimization problems with smoothing functions satisfying the gradient
consistency property.

For the SQP method under a penalty framework to converge globally, usually the
set of the multipliers is required to be bounded (see, e.g., [2]). This amounts to saying
that the MFCQ is required to hold. For the nonsmooth optimization problem, the
corresponding MFCQ is referred to as the GMFCQ. Unfortunately, the GMFCQ is
quite strong for certain classes of problems. For example, it is well known by now
that the GMFCQ never holds for the bilevel program [46]. Another example of a non-
smooth optimization problem which does not satisfy the GMFCQ is a reformulation
of an SIP [28]. In this paper we propose a new constraint qualification that is much
weaker than the GMFCQ. We call it the weakly generalized Mangasarian—Fromovitz
constraint qualification (WGMFCQ). WGMFCQ is not a constraint qualification in
the classical sense. It is defined in terms of the smoothing functions and the se-
quence of iteration points generated by the smoothing algorithm. In our numerical
experiment, WGMFCQ is very easy to satisfy for the bilevel programs.

Both the objective function and the constrained functions may be nonsmooth.
We first use some smoothing functions approximating the nonsmooth functions and
then consider the robust formulation which is proposed by Pantoja and Mayne. Under
the EWGMFCQ), global convergence can be obtained.

The rest of the paper is organized as follows. In section 2, we present prelimi-
naries which will be used in this paper and introduce the new constraint qualification
WGMFCQ. In section 3, we consider the smoothing approximations of the original
problem and propose the smoothing SQP method under an [, penalty framework.
Then we establish the global convergence for the algorithm. In section 4, we apply
the smoothing SQP method to bilevel programs. The final section contains some
concluding remarks.

We adopt the following standard notation in this paper. For any two vectors a
and b in R", we denote their inner product by a”b. Given a function G : R — R™,
we denote its Jacobian by VG(z) € R™*" and, if m = 1, the gradient VG(z) € R" is
considered as a column vector. For a set 2 C R™, we denote the interior, the relative
interior, the closure, the convex hull, and the distance from x to 2 by int £, ri 2, cl €,
co €, and dist(x, Q2), respectively. For a matrix A € R"*™_ AT denotes its transpose.
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In addition, we let N be the set of nonnegative integers and exp[z] be the exponential
function.

2. Preliminaries and the new constraint qualifications. In this section,
we first present some background materials and results which will be used later. We
then discuss the issue of constraint qualifications.

Let ¢ : R™ — R be Lipschitz continuous near Z. The directional derivative of ¢
at Z in direction d is defined by

oy PE A ) — ()
O'(z;d) == ltlﬁ)l ; .

The Clarke generalized directional derivative of ¢ at Z in direction d is defined by

td) —
©°(Z;d) := limsup Pz +td) go(x)
T—T, 10 t

The Clarke generalized gradient of ¢ at T is a convex and compact subset of R™
defined by

dp(z) == {£ e R : £Td < ©°(z;d) Vd € R"}.

Note that when ¢ is convex, the Clarke generalized gradient coincides with the sub-
differential in the sense of convex analysis, i.e.,

0p(z) = {€ € R : T (0 — 7) < () — (&) Va € R"},

and, when ¢ is continuously differentiable at Z, we have dp(Z) = {Vp(Z)}. Detailed
discussions of the Clarke generalized gradient and its properties can be found in
(10, 11].

For Z, a feasible solution of problem (P), we denote by I(Z) := {i = 1,...,p:
9i(Z) = 0} the active set at Z. The following nonsmooth Fritz John-type multiplier
rule holds by Clarke [10, Theorem 6.1.1]) and the nonsmooth calculus (see, e.g., [10]).

THEOREM 2.1 (Fritz John multiplier rule). Let & be a local optimal solution of
problem (P). Then there exist r >0, \; >0 (i € [(Z)), \; e R (j=p+1,...,q) not
all zero such that

(2.1) 0eraf(z)+ Z Xi0gi (T) + Zq: )\Jahj(ﬂj‘)

iel(z) j=pr1

There are two possible cases in the Fritz John multiplier rule: » > 0 or r = 0. Let
Z be a feasible solution of problem (P). If the Fritz John condition (2.1) holds with
r > 0, then we call Z a (Clarke) stationary point of (P). According to Clarke [10], any
multiplier A € R? with \; > 0, ¢ = 1,...,p, satisfying the Fritz John condition (2.1)
with » = 0 is an abnormal multiplier. From the Fritz John multiplier rule, it is easy
to see that if there is no nonzero abnormal multiplier, then any local optimal solution
Z must be a stationary point. Hence it is natural to define the following constraint
qualification.

DEeFINITION 2.1 (NNAMCQ). We say that the no nonzero abnormal multiplier
constraint qualification (NNAMCQ) holds at a feasible point T of problem (P) if

q
0€ > Ndgi(@) + > Nohi(x) and X >0, i € I(z),
i€l(T) Jj=p+1
=\ =0, \,=0,i€l(z), j=p+1,...,q
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It is easy to see that NNAMCQ amounts to saying that any collection of vectors
{viyi € I(Z),vps+1,...,0q},

where v; € 0¢;(z) (i € I(x)), v; € 0h;(Z) (j = p+1,...,q), are positively lin-
early independent. NNAMCQ is equivalent to the generalized MFCQ which was first
introduced by Hiriart-Urruty [24].

DEFINITION 2.2 (GMFCQ). A feasible point T is said to satisfy the general-
ized Mangasarian—Fromovitz constraint qualification (GMFCQ) for problem (P) if for

any given collection of vectors {v;,i € I(Z),vpy1,...,04}, where v; € 0g;(Z) (i €
I(z)), v € 0h;(Z) (j=p+1,...,q), the following two conditions hold:
(i) vp+1, ..., vq are linearly independent.

(ii) There exists a direction d such that

vld <0, i€l(z),
v;fpdzO, j=p+1,...,q

In order to accommodate infeasible accumulation points in the numerical algo-
rithm, we now extend the NNAMCQ and the GMFCQ to allow infeasible points.
Note that when Z is feasible, ENNAMCQ and EGMFCQ (see Definitions 2.3 and 2.4)
reduce to NNAMCQ and GMFCQ), respectively.

DEFINITION 2.3 (ENNAMCQ). We say that the extended no nonzero abnormal
multiplier constraint qualification (ENNAMCQ) holds at & € R™ if

P q
0> Ndgi(z)+ Y Nohi(z) and A >0, i=1,...,p,
=1

Jj=p+1

ZAigi(aéH > Njhi(z) >0

Jj=p+1

imply that Ay =0, \j =0 foralli=1,....p, j=p+1,...,q.

DEFINITION 2.4 (EGMFCQ). A point & € R™ is said to satisfy the extended
generalized Mangasarian—Fromovitz constraint qualification (EGMFCQ) for problem
(P) if for any given collection of vectors {v;,v; i =1,...,p, j=p+1,...,q}, where
v; € 09i(T), vj € Oh;(Z), the following two conditions hold:

(i) vp+1, ..., vq are linearly independent.

(ii) There exists a direction d such that

gi(z)+vld<0,i=1,...,p,
hj(i)—l—v;‘-rdzO, j=p+1,...,q.

Note that under the extra assumption that the functions g¢; are directionally
differentiable, the EGMFCQ coincides with the conditions (B4) and (B5) in [25].

Since the set of the Clarke generalized gradient can be large, the ENNAMCQ and
the EGMFCQ may be too strong for some problems to hold. In what follows, we pro-
pose two conditions that are much weaker than the ENNAMCQ and the EGMFCQ),
respectively. For this purpose, we first recall the definition of smoothing functions.

DEFINITION 2.5. Let g : R™ — R be a locally Lipschitz function. Assume that,
for a given p >0, g, : R" = R is a continuously differentiable function. We say that
{9p : p > 0} is a family of smoothing functions of g if lim._,2 pree 9p(2) = g(z) for
any fized x € R™.
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Such sequence g,(-) converges continuously to g(-) as defined in [38].

DEFINITION 2.6 (see [4, 9]). Let g : R™ — R be a locally Lipschitz continu-
ous function. We say that a family of smoothing functions {g, : p > 0} of g sat-
isfies the gradient consistency property if limsup,_,, ,1o Vg,(2) is nonempty and
limsup,_,, 100 V9p(2) € 9g(x) for any x € R™, where limsup,_,, 1o, Vgp(2) de-
notes the set of all limiting points

limsup Vg,(z) := { lim Vg, (z) : 2z =z, pr T oo}.
z—x, pToo k—o00
Note that according to [38, Theorem 9.61 and Corollary 8.47(b)], for a locally
Lipschitz function g and its smoothing family {g, : p > 0}, one always has the
inclusion

0g(z) C co limsup Vg,(z).

z—x, pToo
Thus our definition of gradient consistency is equivalent to saying that

0g(z) = co limsup Vg,(z),
z—x, pToo
which is the definition used in [5, §].

It is natural to ask whether one can always find a family of smoothing functions
with the gradient consistency property for a locally Lipschitz function. The answer
is yes. Rockafellar and Wets [38, Example 7.19 and Theorem 9.67] show that for any
locally Lipschitz function g, one can construct a family of smoothing functions of g
with the gradient consistency property by the integral convolution:

gp(x) == /n 9(x —y)d,(y)dy = /Rn 9(Y)dp(z — y)dy,

where ¢, : R" — R is a sequence of bounded, measurable functions with [, ¢,(x)dx
= 1 such that the sets B, = {z : ¢,(z) > 0} form a bounded sequence converging to
{0} as p 1 0o. Although one can always generate a family of smoothing functions with
the gradient consistency property by integral convolution with bounded supports,
there are many other smoothing functions which are not generated by the integral
convolution with bounded supports [5, 6, 7, 8, 32].

Using the smoothing technique, we approximate the locally Lipschitz functions
f(x), gi(x),i=1,...,p,and hj(z), j = p+1,...,q, by families of smoothing functions
{fol@):p >0}, {gi(x) : p>0},i=1,...,p,and {hI(z) : p> 0}, j =p+1,...,q. We
also assume that these families of smoothing functions satisfy the gradient consistency
property. We use certain algorithms to solve the smooth problem and drive the
smoothing parameter p to infinity. Based on the sequence of iteration points of the
algorithm, we now define the new conditions.

DEFINITION 2.7 (WNNAMCQ). Let {z} be a sequence of iteration points for
problem (P), and let pi T oo as k — oo. Suppose that T is a feasible accumulation
point of the sequence {xr}. We say that the weakly no nonzero abnormal multiplier
constraint qualification (WNNAMCQ) based on the smoothing functions {g/,(x) : p >
0},i=1,...,p, {hz(x) :p>0}, j=p+1,...,q, holds at T, provided that for any
Koy C K C N such that limg_yo0 kex x = T and any collection of vectors {v;(i €
I(z)),vi(j=p+1,...,q)}, where

vi k%ololgcleKo Vop,(@x), $€ 1), v k%olcal?eKo Vo (@), G=pH L. 0q,
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q
0= Z AiU; + Z /\jUj and \; >0, ZEI(@‘)
i€l(T) Jj=p+1
:>)\i:0,/\j:0, iEI({f),j:p-i-l,...,q.

DEFINITION 2.8 (WGMFCQ). Let {x)} be a sequence of iteration points for prob-
lem (P), and let py 1 00 as k — oco. Let T be a feasible accumulation point of the
sequence {xx}. We say that the weakly generalized Mangasarian—Fromovitz constraint
qualification (WGMFCQ) based on the smoothing functions {g'(z) : p > 0}, i =
1,...,p, {hz(x) :p>0},j=p+1,...,q, holds at T, provided that the following con-
ditions hold. For any Ko C K C N such that limy_o0 ke xx = T and any collection
of vectors {vi(i € I(Z)),v;(j =p+1,...,q)}, where v; = limy_, 0 ke i, Vb, (41), @ €
I(ji), v; = 1imk_>oo7k€[(0 Vh%k (ﬂjk), j=p+ 1,...,q,

(i) vp+1,...,vq are linearly independent;

(ii) there exists a direction d such that

vld<0 Viel(z),
dezO Vi=p+1,...,q.

We now extend the WNNAMCQ and the WGMFCQ to accommodate infeasible
points.

DEFINITION 2.9 (EWNNAMCQ). Let {x} be a sequence of iteration points for
problem (P), and let px T 00 as k — oo. Let T be an accumulation point of the
sequence {xr}. We say that the extended weakly no nonzero abnormal multiplier
constraint qualification (EWNNAMCQ) based on the smoothing functions {g}(x) :
p>0}i=1,...,p, {hz(x) :p>0},5=p+1,...,q, holds at T, provided that the
following condition holds. For any Ko C K C N such that limy_,o0 kex T = T and
any

Vi = k—)(}cln,I?GKo vgpk(xk)a i=1,. - Dy U= k—)olcln,rilEKo Vhpk(xk)ﬂ J=p+ 1. <94
p q

(22) OZZ/\Z'UZ'—I— Z )\jvj and \; >0, i=1,...,p,
i=1 j=p+1

Jj=p+1

mmply that \; =0, \; =0,1=1,...,p, j=p+1,...,q.

DEFINITION 2.10 (EWGMFCQ). Let {x} be a sequence of iteration points for
problem (P), and let px T o0 as k — oo. Let T be an accumulation point of the
sequence {xy}. We say that the extended weakly generalized Mangasarian—Fromovitz
constraint qualification (EWGMFCQ) based on the smoothing functions {g;(x) p >
0}, i =1,...,p, {hz(x) :p >0}, j =p+1,...,q, holds at T, provided that the
following conditions hold. For any Ko C K C N such that limy_,o0 kex T = T and
any collection of vectors {v;,v; :i=1,...,p, j=p+1,...,q}, where

(i) vp+1, ..., vq are linearly independent;
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(ii) there exists a direction d such that

(2.4) gi(@) +vld<0 Vi=1,...,p,
(2.5) hi(Z)+vjd=0 Vi=p+1,....q.

Due to the gradient consistency property, it is easy to see that, in general, the
EWNNAMCQ and the EWGMFCQ are weaker than the ENNAMCQ and the EGM-
FCQ, respectively. We finish this section with an equivalence between the EWGM-
FCQ and EWNNAMCQ.

THEOREM 2.2. The following implication always holds:

EWGMFCQ < EWNNAMCAQ.

Proof. We first show that EWGMFCQ implies EWNNAMCQ. To the contrary we
suppose that EWGMFCQ holds, but EWNNAMCQ does not hold, which means that
there exist scalars \; € R, i = 1,...,¢, not all zero such that conditions (2.2)-(2.3)
hold. Suppose that d is the direction that satisfies condition (ii) of EWGMFCQ. Due
to the linear independence of v,11,...,v, (condition (i) of EWGMFCQ), the scalars
Ai, i =1,...,p, cannot all be equal to zero. Multiplying both sides of condition (2.2)
by d, it follows from conditions (2.4) and (2.5) that

p q
0=> Avfd+ Y Nvjd
i=1 j=p+1

p q
<= Xgi@) = Y Ahy(@) <0,
i=1

Jj=p+1

which is a contradiction. Therefore, EWNNAMCQ holds.

We now prove the reverse implication. Assume that EWNNAMCQ holds. EWN-
NAMCQ implies condition (i) of EWGMFCQ. If both (i) and (ii) of EWGMFCQ
hold, we are done. Suppose that condition (ii) of EWGMFCQ does not hold; that is,

there exist a subsequence Ko C K C N and vy,...,vq wWith limy_o rerx Tx = T and
v; = lim V4 (z i=1,...
4 ks 00, k€ Ko gpk( k)7 l » Py
v = lim VR (z = 1,...
J f—s 00, ke Ko Pk( k)7 J p+1, 4,

such that for all directions d, (2.4) or (2.5) fails to hold. Let A := [v1,...,v,] be the
matrix where vy, ...,v, are columns and

Sy := {z: 3d such that z = ATd},

SQ = {Z 1z < _gl(j)v 1= 17"'ap7 Zj = _hj(jj)v ]:p+175q}
Since the convex sets S and clS; are nonempty and ri S; and ri clSs have no point
in common by the violation of condition (ii) of EWGMFCQ, from [37, Theorem 11.3],
there exists a hyperplane separating S7 and clSy properly. Since Sp is a subspace and
thus a cone, from [37, Theorem 11.7], there exists a hyperplane separating S; and
clSy properly and passing through the origin. By the separation theorem (see, e.g.,
[37, Theorem 11.1]), there exists a vector y such that

inf{y’z:2€8}>0>sup{y’z: 2 € clSy},

(2.6) sup{y’z: 2 € 81} > inf{yTz: 2 € clS,}.
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From (2.6), we know that y # 0. Therefore, there exists y € R?, y # 0, such that
yTz > (0 for all z € 57 and yTz < 0 for all z € clSs.
(a) We first consider the inequality y?7z < 0 for all z € clS,. By taking 2° € clS,

such that Z?, 7 =p+1,...,q, are constants and z? — —o0, i € {1,...,p}, we conclude
that
(2.7) y; >0, i=1,...,p.

Choosing 22 € clSy with 22 = —g;(Z), i =1,...,p, zj2 =—h;(@), j=p+1,...,q, we
have

(2.8) Zyigi(f) + > yhi(@) = —y"2 > 0.

Jj=p+1

(b) We now consider the inequality y7z > 0 for all z € S7. Select an arbitrary d.
Then 2! := ATd € Sy, 2/ := —z! = AT(—d) € Sy, and hence

p q
> yivld+ > yjold=y" >0,
=1 Jj=p+1

p q
Syl (—d)+ Yyl (—d)=y" > 0.
i=1 j=p+1

That is,

p q
(2.9) Zyivi + Z y;v; = 0.
i=1

J=p+1

Therefore, if there exists a nonzero vector y such that y”z > 0 for all z € S; and y”z <
0 for all z € clSs, the vector should also satisfy conditions (2.7)-(2.9). However, from
the EWNNAMCQ, conditions (2.7)—(2.9) imply that y = 0, which is a contradiction.
Thus condition (ii) of EWGMFCQ must hold. The proof is therefore complete. d

In the case when there is only one inequality constraint and no equality con-
straints in problem (P), the EWNNAMCQ and EWGMFCQ at Z reduce to the fol-
lowing condition: There is no Ko € K C N such that limy_,o0 rex or = T and
limy, 00, ke Ky Vg;k (zx) # 0. This condition is slightly weaker than a similar con-
dition [28, Assumption (B4)] which requires that there is no Ky C N such that
limy, 0 ke, V5, (1) # 0.

3. Smoothing SQP method. In this section we design the smoothing SQP
algorithm and prove its convergence.

Suppose that {g/(z) : p > 0} and {hI(z) : p > 0} are families of smoothing
functions for g;, hj, respectively. Let x; be the current iterate, and let (Wy, 74, pi)
be current updates of the positive definite matrix, the penalty parameter, and the
smoothing parameter, respectively. We will try to find a descent direction of a smooth-
ing merit function by using the smoothing SQP subprogram. In order to overcome
the inconsistency of the smoothing SQP subprograms, following Pantoja and Mayne
[35], we solve the penalized smoothing SQP subprogram:

1
. T 1or
(QP)% de%{rgleﬂ% Vo (xr)" d+ 2d Wid + ri€
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s.t. gzk (xg) + ngk (zp)fd <€ i=1,...,p,
Wl (zx) + VR (zp)Td <& j=p+1,...,q,
—h (w) — VH, (@x)Td< €& j=p+1l,....q
§=>0.
If (dg, &) is a solution of (QP)y, then its Karush-Kuhn—Tucker (KKT) condition can

be written as
q

p
(3.1) 0="Vfy (zr) + Wide + Y X, Vb, (xx) + Y (AFy =X ) VR, (),
1=1 j=p+1

P q
(32) 0=r— [ A, + 3 O+ A0+,
i=1 j=p+1

(3:3) 0 <A, L (gp, (zr) + Vg, (zr) dr — &) <0, i=1,...,p,

(34) 0<Af, L () (xx) + Vh) (21)Tdr — &) <0, j=p+1,....q,
(3.5) 0 <Ay L (=h), (wx) = VA ()" dr — &) <0, j=p+1,....q,
(3:6) 0 <A L—& <0,

where A\, = (A, /\Z, AL s )\i) is a corresponding Lagrange multiplier.
Let p > 0,7 > 0. We define the smoothing merit function by

Op,r(2) := fo(z) + 1) (2),

where ¢,(z) := max{0, g}(x), i = 1,...,p, |h(2)], 7 =p+1,...,q}, and propose the
following smoothing SQP algorithm.

ALGORITHM 3.1. Let {83,01} be constants in (0,1), and let {o,0’, 7} be constants
in (1,00). Choose an initial point xo, an initial smoothing parameter po > 0, an
initial penalty parameter ro > 0, and an initial positive definite matriz Wy € R™ ™,
and set k := 0.

1. Solve (QP)y to obtain (dy,&) with the corresponding Lagrange multiplier
e = ()\‘Z,/\Z,/\;,)\i); go to step 2.

2. If & =0, set rr11 := 1 and go to step 3. Otherwise, set 111 := o't and
go to step 3.

3. Let w11 := op + apdy, where ay = B', 1 € {0,1,2,...} is the smallest
nonnegative integer satisfying

(3.7) Opr.re@h41) = Oppr (k) < 010 dc Widy.
If
(3.8) [

set ppy1 = opi and go to step 4. Otherwise, set pry1 = pr and go to step 1. In
either case, update to a symmetric positive definite matric Wiy, and k =k + 1.
4. If a stopping criterion holds, terminate. Otherwise, go to step 1.
We now show the global convergence of the smoothing SQP algorithm. For this
purpose, we need the following standard assumption.
Assumption 3.1. There exist two positive constants m and M, m < M, such that
for each k£ and each d € R™,

ml|d|[* < d"Wid < M]d||*.
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THEOREM 3.1. Suppose that {(xk, pk, di, Ek, M, Tk, Wi )} s a sequence generated
by Algorithm 3.1. Then for every k,

(3.9) o’ (zg, di) < —dpWidy,

PksTk

and dy is a descent direction of function 0,, . (z) at xy, provided that Assump-
tion 3.1 holds. Furthermore, suppose that Algorithm 3.1 does not terminate within
finite iterations. Suppose that the sequences {xy}, {\c}, and {ry} are bounded. Then
K = {k: ||dy|| < fip,'} is an infinite set, and any accumulation point of sequence
{zr} is a stationary point of problem (P).

Proof. Since (dy, &) is a solution of (QP), the KKT conditions (3.1) — (3.6) hold.
The directional derivative of the function x — [h?, (z)| at x in direction dy, is

_\Vhi T i J
b i ) o
Vhi)k (xk)Tdk if h’%k (Jik) > 0.
Denote the index sets
Io={i=1,...,p: gf)k (k) = dp, (x1) },
Jo={i=p+ 1. q: ) (k) = 6 (r)},
T =i =p+ 1.0 =N, (z) = ¢p (a1)},

and I'y, := [;,UJ,"UJ, . Therefore the directional derivative of the function z — ¢,, ()
at xy in direction dj, is

0 if ¢, (zr) =0and I'y =0,
maX{O, Vg/ijlc (Jik)Tdk, 1€ Ik, |Vh¥)k (xk)TdkL j S J]:r} if d)pk (Jik) =0 and I'y, 7& @,
maX{Vng (xk)Tdk, 1€ I, thpk (xk)Tdk, J € J,:'_,
—thp'k (:Ek)Tdk, j € J_} if (bpk (xk) > 0.

From (3.3)—(3.5), we have
Vb, (@) di <& — gb, (xk) = &k — o, (1), i € I,
Vh (ze)Tdp < & — hd (zp) = & — bp (1), J € T},
=Vhi (wx)"de < &+ b, (x1) = & — dp, (x1), G €T,
Thus, ¢, (zk,dr) < & — ¢p, (vx). Therefore,
0 @ di) =V fo (1) dic + 710, (2k, di))
<V fo (@) di + 1 (6 — Py (1)) -
From (3.2) and (3.6), we know that if £, > 0, then
P q
me= Y Mo+ D> A |
i=1 j=p+1
which means

P q
(3.10) rE€k = Z)\zg,k + Z Ak 2450 | &
=1

Jj=p+1
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By taking conditions (3.1), (3.3)—(3.5), and (3.10) into account, we obtain that
for each k,

0 i (@hsdi) =0, (w1, di) + Z X o (gh, (@) + V), (xx) T dy, — &)
=1
q

+ Z Au(hd, () + VR, ()Tl — &) + Y AT (=hd, (xx) = VRS, (ax) " dy, — &)

=p+1 Jj=p+1
< dekkorZAzk g, (z1) Z Are(h (x) — &)
=1 1=p+1
q .
+ 3 A(=hd, (@r) — &) + 7k (€ — bp, (@)
1=p+1
q
< —dWidy + i (§k — Gy (T1)) Zx\ + > AL+ Z Ak | (Do (k) — &)
i=p+1 i=p+1
p q
= —dgWidy, — | = > X, = > A, - Z Ak | Gon (@)
=1 i=p+1 i=p+1
< —dpWidy.

Hence inequality (3.9) holds. Since W}, is assumed to be positive definite, it follows
that dj is a descent direction of function 6,, ., (z) at x) for every k. Therefore, the
algorithm is well defined.

We now suppose that Algorithm 3.1 does not terminate within finite iterations.
We first prove that there always exists some dj such that (3.8) holds; thus K is an
infinite set.

To the contrary suppose that ||dk|| > ¢o > 0 for each k. Then Assumption 3.1
together with condition (3.7) implies the existence of a positive constant ¢ such that
Opr i (@rt1) < Oppr () — . Consequently, (3.8) fails. From the boundedness of
{r}, we know that & = 0 when k is large. We can then assume that there exists a k
large enough such that pj, = p; and 7 = 7 for k > k by the updating rule of p;, and
TE-

Since the sequence {z}} is bounded, the sequence {6, (xx)} is bounded below.
Moreover, 0,, r. (Tky1) < Op (@) — ¢, ¢ > 0, which implies that the sequence
{0,;.7(xx)} is monotonously decreasing. Hence we have

ZC = Z PksT (xk) op;;,?(xk+l))

K>k k>k
= Oppr(2g) — Hm Ope 7 ()
< 00,

which is a contradiction. Therefore K is an infinite set, which also implies that pj 1 0o
as k — oo.

Suppose there exist X C K and z such that limy o0 ke x = Z. Since the
sequence {\;} is bounded, without loss of generality, assume there exists a subse-
quence K1 C K such that ()\Z,)\;,/\g,)\i) — (A T AT A as k — oo, k € Ky and
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A > 0. By the gradient consistency property of f,(-), gé(-), t=1,...,p, and hz(~),
7=p+1,...,q, there exists a subsequence K, C K such that

lim _ Vf, (z) € 0f (%),

k—o0, ke K4

lim ngk (xg) € 0gi(Z), i =1,...,p,
k—o0, ke Ky

lim Vhf)k(xk) €0h;(z), j=p+1,...,q
k—o0, ke K4

Taking limits in (3.1) and (3.4)-(3.6) as k — oo, k € K, by the gradient consistency
properties and & — 0, it is easy to see that T is a stationary point of problem (P).
The proof of the theorem is complete. d

In the rest of this section, we give a sufficient condition for the boundedness of
sequences {ry} and {\,}. We first give the following result on error bounds.

LEMMA 3.1. For each k € N, 3 =1,...,1, let F,g,Fj : R™ = R be continuously
differentiable. Assume that for each j = 1,...,1, {F](-)} and {VF,g()} converge
pointwise to FI(-) and VFI(-), respectively, as k goes to infinity. Let d be the point
such that FJ (d) =0,j=1,...,1. Suppose that there exist Kk > 0 and § > 0 such that
for all p; € [-1,1], j=1,...,1, not all zero and all d € d + 0B it holds that

l
. 1
Z,UjVFJ(d) > —.
j=1

K

Then for sufficiently large k,

l
(3.11) dist(d, Sk) < kY _|F(d),
j=1

where S :={d € R" : FJ(d) = 0,5 =1,...,1}.

Proof. Denote F(d) == 3,_, |Fj(d)|,AFk(d) =3 |FL(d)]. IfAd € S, then
(3.11) holds trivially. Now suppose that d & Si. Since Fi(d) — F(d) as k — oo,
there exists a k € N such that Fj(d) < k1§ when k > k. Let ¢ := Fj(d). Then
ek < §. Take A € (ek,0). Then by Ekeland’s variational principle [38, Proposition
1.43], there exists an w such that [|w — d|| < A, Fi(w) < Fj(d), and the function
o(d) := Fr(d) + [/d — wl| attains minimum at w. Hence by the nonsmooth calculus
of the Clarke generalized gradient, we have
€
—B
A )
where B denotes the closed unit ball of R™. Thus [vx]| < § < L for all v, €
O0Fy(w), for k > k. We now show that Fj(w) = 0 by contradiction. Suppose that
Fi(w) # 0. Then there exists at least one j such that F}(w) # 0. For such a j,
O|F](w)| = {£VF](w)}. Therefore there exist puf € [-1,1], j = 1,...,1, not all zero
such that v = Z;Zl ,usF,z (w). We assume that there exist a subsequence K C N
and p; € [—1,1], j = 1,...,1, not all zero such that for every k € K, F(w) # 0,
limy, o0 kei = pj, j = 1,...,1. Since {VF](w)}r converge to VF/(w), we have

0 € 0F,(w) +

v = Mg oo ker Vg = Zé:l 1; VI (w) and |jv]| < &, which is a contradiction. The

— K



SMOOTHING SQP METHODS FOR NONSMOOTH PROBLEMS 1401

contradiction shows that we must have Fj(w) = 0 and hence w € Si. Therefore we
have

dist(d, S) < ||d — w]|| < A.
Since this is true for every A € (e, d), we have that for all k& > k,
dist(d, Si) < ex = k|Fi(d)|. O

THEOREM 3.2. Assume that Assumption 3.1 holds. Suppose that Algorithm 3.1
does not terminate within finite iterations and {(zk, px, dk, &k, Ak, Tk)} 1S a sequence
generated by Algorithm 3.1. If EWGMFCQ holds (or, equivalently, EWNNAMCQ
holds) at any accumulation point T, then the following two statements are true:

(a) {dr} and {&} are bounded.

(b) {rx} and {\} are bounded. Furthermore, when k is large enough, & = 0.

Proof. (a) Assume that there exists a subset K C N such that limg_ o0 ke x Tk =
Z. To the contrary, suppose that {d;}x is unbounded. Then there exists a subset
Ky C K such that limy_,c0 rer, ||dr| = 0o and limy_,o kek, Tx = T. By the gradient
consistency property, without loss of generality we may assume that

. — ].. i ) —_— ]. DY
V; . l,lkl ; Cgpk (xk), 7 s , D,

;= 1.“1 ChJ x = +1 .
U] k l,k Ko Pk( k)7 J p 9 ,q

By EWGMFCQ, vp41, .. .,vq are linearly independent and there exists d such that

gi(@) +vld<0,i=1,...,p,
hj(a’:)—kv'fd:(), ji=p+1,...,q.

Since the vectors {limy_ oo, ke K, Vh%k (xg) : j =p+1,...,q} are linearly independent,
it is easy to see that for sufficiently large k € Ky, the vectors {Vhf)k (), j =p+
1,...,q} are also linearly independent. Denote

Fi(d) ==hj(@)+v]d, j=p+1,....q,
F,g(d) = hzk (xg) + thk (zp)¥d, j=p+1,...,q.
Then FJ(LZ) =0,7=p+1,...,¢. Since vpy1,...,v, are linearly independent, there

is x such that 0 < L < min{| Z;I.:pﬂ vl =y € [—1,1] not all equal to zero}. By
Lemma 3.1, for sufficiently large k,

q
(3.12) dist(d, Sx) <k > [Fi(d)],
Jj=p+1

where Sy := {d € R" : F/(d) =0, j = p+1,...,q}. Since Sy, is closed, there exists
dy € Sy, such that ||d — di|| = dist(d, Sg). Moreover, by virtue of (3.12), the fact that

limy, o0 ke, F(d) = F(d) = 0 for all j = p+ 1,..., q implies that ||d — di|| — 0 as
k — oo,k € Ky. Hence for sufficiently large k, we have

(3.13) B, (o) + VRS, (1) di =0, = p+1,...0,

(3.14) gzk(xk)—i—Vg;k(xk)Tcik <0,i=1,...,p.

Conditions (3.13)-(3.14) imply that (dg,0) is a feasible solution for (QP);. Since
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(dg, &) is an optimal solution to problem (QP), we have that for any k > k, k € Ko,

1 1
V for (@) T di + §d;‘5Wkdk < Vo (zn) di + §d;‘:Wkdk + i€k

~ 1 ~
(3.15) < Vi () dy + 5d”,fvvkdk.

Since Vf,, (xk)TcZk + %CZ%W]@CZ]C is bounded, it follows that {dj}x is bounded from
Assumption 3.1. Since (dy, &) are feasible for problem (QP)y, by the definition of
the smoothing function and the gradient consistency property, it is easy to see that
if {di}K is bounded, then {&x}k is also bounded. Since K and Z are an arbitrary
subset and an arbitrary accumulation point, {d} and {£x} are bounded for the whole
sequence.

(b) To the contrary, suppose that {\;} is unbounded. Then there exists a subset
K7 C K such that limy_,co kek, || Mk|| = 0o and & > 0 for k € K; sufficiently large.
By the gradient consistency property, without loss of generality we may assume that

=i A Li=1,...,p,
vi=, lim Vg, (zk), i p
v = lim VA (x = 1,...
J fi—s o, hE KL Pk( k)7 J p+1, 4,
and limy_ o0 ke ki, Hi—:H = )\ for some nonzero vector A = (A9, AT, A7, \§) > 0. Divid-

ing by ||Ax|| in both sides of (3.1) and letting k — oo, k € K7, we have

p q
(3.16) 0=> NMuvi+ > (A=),
i=1 j=p+1

Letting k — oo, k € K1, in conditions (3.3)—(3.6) and assuming that (d, ) is the
limiting point of {(dk, &)}k, , we have

0< N L (gi(2)+vfd—§€)<0,i=1,...,p,

0< A L (hy(7) +vjd =€) <0, j=p+1,....q,
0<A; L(=hi(@)—vjd—§) <0, j=p+1,....q,
0< A L —£<0

we have
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Thus,
P _ B B P a o
(3.17) ZA? + D0 O k(@) =Y NEF DT O +A7)E= 0.

From EWGMFCQ (equivalently, EWNNAMCQ), condition (3.17) together with con-
dition (3.16) implies that \Y =0,i=1,...,p, and /\ )\ =0,j=p+1,.

Consider the case where 5\;‘7 =0,7=1,...,p, and there exists an index j €
{p+1,...,q} such that 5\+ = A; > 0. Then for sufficiently large k € K, )‘Ik >0
and A7, > 0. From the complementary condition (3.4)—(3.5), we must have & = 0
for sufﬁelently large k € K4, which is a contradiction.

Otherwise, consider the case where /\f =0,72=1,...,p, and E\;F = 5\; = 0,
j=p+1,...,q. Then since ) is a nonzero vector, we must have A\* > 0, which implies
that )\i > 0 for sufficiently large k € K;. From the complementarity condition (3.6),
&, = 0 for sufficiently large k& € K7, which is a contradiction.

The contradiction shows that {A;} must be bounded. By the relationship between
{Ax} and {ry} given in (3.2), the boundedness of {)\;} implies the boundedness of
{rr}. Furthermore, from the updating rule of the algorithm, the boundedness of the
sequences {\;} and {ry} implies that when k is large enough, & = 0. We complete
the proof. O

The following corollary follows immediately from Theorems 3.1 and 3.2.

COROLLARY 3.2. Let Assumption 3.1 hold, and suppose that Algorithm 3.1 does
not terminate within finite iterations. Suppose that the sequence {xy} is bounded.
Assume that EWGMFCQ (or, equivalently, EWNNAMCQ) holds at any accumulation
point of sequence {x1}; then K := {k : ||di| < fipy'} is an infinite set, and any
accumulation point of sequence {xy} i is a stationary point of problem (P).

In the case where the objective function is smooth and there is only one inequality
constraint and no equality constraints in problem (P), Corollary 3.2 extends [28,
Theorem 4.3] to allow the general smoothing function instead of the specific smoothing
function.

4. Applications to bilevel programs. The purpose of this section is to apply
the smoothing SQP algorithm to the bilevel program. We illustrate how we can
apply our algorithm to solve the bilevel program, and we demonstrate through some
numerical examples that although the GMFCQ never holds for bilevel programs, the
WGMFCQ may be satisfied easily.

In this section we consider the simple bilevel program

(SBP) min F(z,y)
s.t. y e S(x),

where S(x) denotes the set of solutions of the lower level program

(Pz) min f(z,y),

yey

where F, f : R™ x R™ — R are continuously differentiable and twice continuously
differentiable, respectively, and Y is a compact subset of R”. Our smoothing SQP
algorithm can easily handle any extra upper level constraint, but we omit it for sim-
plicity. For a general bilevel program, the lower level constraint may depend on the
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upper level variables. By “simple,” we mean that the lower level constraint Y is inde-
pendent of x. Although (SBP) is a simple case of the general bilevel program, it has
many applications such as the principal-agent problem [30] in economics. We refer
the reader to [1, 15, 16, 39, 43] for applications of general bilevel programs.

When the lower level program is a convex program in variable y, the first order
approach to solving a bilevel program is to replace the lower level program by its
KKT conditions. In the case where f is not convex in variable y, Mirrlees [30] showed
that this approach may not be valid in the sense that the true optimal solution for
the bilevel problem may not even be a stationary point of the reformulated problem
by the first order approach.

For a numerical purpose, Outrata [34] proposed to reformulate a bilevel program
as a nonsmooth single level optimization problem by replacing the lower level program
by its value function constraint, which in our simple case is

(VP) min F(z,y)
(4.1) st. f(z,y) —V(z) =0,
reR" yey,

where V(z) := minyey f(z,y) is the value function of the lower level problem. By
Danskin’s theorem (see [11, page 99] or [14]), the value function is Lipschitz continuous
but not necessarily differentiable, and hence problem (VP) is a nonsmooth optimiza-
tion problem with Lipschitz continuous problem data. Ye and Zhu [46] pointed out
that the usual constraint qualifications such as the GMFCQ never hold for problem
(VP). Ye and Zhu [46, 47] derived the first order necessary optimality condition for the
general bilevel program under the so-called partial calmness condition under which
the difficult constraint (4.1) is moved to the objective function with a penalty.

Based on the value function approach, Lin, Xu, and Ye [27] recently proposed to
approximate the value function by its integral entropy function, i.e.,

Vo) == —p~'In </Y exp[—pf(w,y)]dy)
— V(@) - p ' ( [ espl-ptitea) - V(xmdy) |

and developed a smoothing projected gradient algorithm to solve problem (VP) when
problem (SBP) is partially calm and to solve an approximate bilevel problem (VP).,
where the constraint (4.1) is replaced by f(z,y) — V(z) < e for small ¢ > 0 when
(SBP) is not partially calm.

Unfortunately, the partial calmness condition is rather strong, and hence a local
optimal solution of a bilevel program may not be a stationary point of (VP). Ye and
Zhu [48] proposed to study the following combined program by adding the first order
condition of the lower level problem into the problem (VP). Although the partial
calmness condition is a very strong condition for (VP), it is likely to hold for the
combined problem under some reasonable conditions [48].

Recently Xu and Ye [45] proposed a smoothing augmented Lagrangian method
to solve the combined problem with the assumption that each lower level solution lies
in the interior of Y:

CP i F(z,
(CP) o in (z,9)

(4.2) st. f(z,y) —V(z) <0,
(43) Yy f(y) =0.



SMOOTHING SQP METHODS FOR NONSMOOTH PROBLEMS 1405

They showed that if the sequence of penalty parameters is bounded, then any accumu-
lation point is a Clarke stationary point of (CP). They argued that since the problem
(CP) is very likely to satisfy the partial calmness or the weak calmness condition (see
[48]), the sequence of penalty parameters is likely to be bounded.

To simplify our discussion so that we can concentrate on the main idea, we make
the following assumption.

Assumption 4.1. Every optimal solution of the lower level problem is an interior
point of set Y.

Under Assumption 4.1, every optimal solution to the lower level constrained prob-
lem is a local minimizer to the objective function of the lower level problem, and
hence the necessary optimality condition of the lower level problem is simply equal
to Vyf(z,y) = 0. For some practical problems, it may be possible to set the set ¥
large enough so that all optimal solutions of the lower level problem are contained in
the interior of Y. For example, for the principal-agent problem in economics [30], a
very important application of simple bilevel programs, the lower level constraint is an
interval and the solution of the lower level problem can usually be estimated to lie
in the interior of a certain bounded interval Y. If it is difficult to find a compact set
Y that includes all optimal solutions of the lower level problem, but the set Y can
be represented by some equality or inequality constraints, then one can use the KKT
condition to replace the constraint (4.3) in the problem (CP). In this case the problem
(CP) will become a nonsmooth mathematical program with equilibrium constraints.
We will study this case in a separate paper.

Since problem (CP) is a nonconvex and nonsmooth optimization problem, in
general the best we can do is to look for its Clarke stationary points. Since we assume
that all lower level solutions lie in the interior of set Y, any local optimal solution of
(CP) must be the Clarke stationary point of (CP) with the constraint y € Y removed.
Hence the smoothing SQP method introduced in this paper can be used to find the
stationary points of (CP).

Let (z,y) be a local optimal solution of (CP). Then by the Fritz John—type mul-
tiplier rule, there exist 7 > 0, A1 > 0, Ao € R™ not all zero such that

(4.4) 0 € rVF(z,9) + M (Vf(z,9) —0V(z) x {0}) + V(V, £)(,75)" X

In the case when 7 is positive, (7, ) is a stationary point of (CP). A sufficient condition
for r to be positive is that in the Fritz John condition, » = 0 implies that A, Ao are
all equal to zero. Unfortunately we now show that r can always be taken as zero in
the above Fritz John condition for problem (CP). Indeed, from the definition of V(x),
we always have f(z,y) — V(z) > 0 for any y € Y. Hence any feasible point (z,y) of
problem (CP) is always an optimal solution of the problem

e SOV V@) st Tufle) =0

By the Fritz John—type multiplier rule, there exist A\; > 0, A2 € R™ not all equal to
zero such that

(4.5) 0€ M(Vf(Z,y) — V() x {0}) + V(Vy f)(@,5)" Ao

Observe that (4.5) is (4.4) with » = 0. Since (A1, A2) is nonzero, we have shown that
the Fritz John condition (4.4) for problem (CP) holds with » = 0. In other words,
NNAMCQ (or, equivalently, GMFCQ) for problem (CP) never holds.
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It follows from [27, Theorems 5.1 and 5.5] that the integral entropy function -, (z)
is a smoothing function with the gradient consistency property for the value function
V(z). That is,

lim  4,(2) =V(z) and 0% limsup Vy,(z) C OV (z).

z—x, pToo z—x, pToo

For a sequence of iteration points {(x*,4*)}, the set limsup,_, ., V7,,(z¥) may be
strictly contained in OV (x). Therefore while (4.5) holds for some A\; > 0, Ay € R™
not all equal to zero, the following inclusion may hold only when A; = 0, Ay = 0:

0. € i (Vf(,5)  limsup V7, (25) x {0}) + V(Y )(@,5) Xe.
k—o0

Then, consequently, the WNNAMCQ may hold. We illustrate this point by using

some numerical examples. In these examples, since y € R, the problem (CP) has one

inequality constraint f(z,y) — V(z) < 0 and one equality constraint V, f(x,y) = 0.
Hence the WNNAMCQ

0 € M (VF(2)-limsup Yy, (25) < {0} £ X2V (V, £)(29), M > 0= Ay = do =0,
—00

amounts to saying that for limy_,eo (2%, y*) = (Z,9) and v = limy_,0e V7, (z¥), the
vectors

Vi@,g) = (v,0) and V(V,[f)(z,9)

are linearly independent.

In our numerical experiments, we use the so-called limited-memory Broyden—
Fletcher—Goldfarb—Shanno (LBFGS) approach proposed by Nocedal [33], which is a
modification to the BFGS method for unconstrained optimization problems, to update
the matrix Wy. Define si := 411 — zp and

p

Uk =V foo (@ei1) = Vo (k) = > A (Vgh, (r41) — Vb, (2x))
=1
q

— 3" (N = N (VR (wg1) — VA, ().
Jj=p+1

We update Wy, by

WkSkSTWk k T
Wit1 =Wy — b + L

s;{Wksk s;{yk
if and only if
skl < vs€ Nlurll < e, and  s{ye > voye?

for given (vs,7y,7vsy) > 0. Otherwise, we skip the update. As shown in [13], these
restrictions guarantee the existence of M > m > 0 such that

ml|d|[* < d"Wid < M]d||*.
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In numerical practice, it is impossible to obtain an exact “0”; thus we select some
small enough € > 0, ¢’ > 0 and change the update rule of r, and p; to the case when
& < ¢’ and

ldi|| < max{ipy ", e},

respectively. Also the stopping criterion is considered as follows: For a given ¢; > 0,
we terminate the algorithm at the kth iteration if

lldi|l <& and ||&] <€’

In the remainder of this section, we test the algorithm for some bilevel problems.

Ezample 4.1 (see [30]). Consider Mirrlees’ problem. Note that the solution
of Mirrlees’ problem does not change if we add the constraint y € [—2,2] into the
problem:

min (z —2)% + (y — 1)
s.t. y e S(x),

where S(z) is the solution set of the lower level program

min —x exp[—(y + 1)2] —exp[—(y — 1)2]
st. ye[-2,2].

It was shown in [30] that the unique optimal solution is (Z,y) with & = 1, § ~ 0.958
being the positive solution of the equation

(1+y) = (1 —y) exp[dy].
In our test, we chose the initial point (z¢,y0) = (0.6,0.3) and the parameters
B =08, o1 =1075 pg =100, 79 = 100, /) = 5 % 10°, o = 10, ¢/ = 10, ¢ = 1077,
and ¢ = 1071Y. Since the stopping criteria hold, we terminate at the 16th iteration

with (2, y*) = (1,0.95759). It seems that the sequence converges to (Z, 7).
Since

V(@ y*) — (V7 (2%),0) = (0.01784,0.00015),
V(V, f)(z* y*) = (0.084813,1.70049),

by virtue of the continuity of the gradients it is easy to see that the vectors
Vi(2.5) — (Jim V3,,(2*),0) and V(V,f)()

are linearly independent. Thus the WNNAMCQ holds at (Z,%), and our algorithm
guarantees that (Z,7) is a stationary point of (CP). Indeed, (Z, g) is the unique global
minimizer of Mirrlees’ problem.

Ezample 4.2 (see [31, Example 3.14]). The bilevel program

2
1
min F(z,y) := <x - Z) +y?

s.t. y € S(x) := argmin f(x,y) := § -y
ye[-1,1]
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has the optimal solution point (z,§) = (1, 1) with an objective value of 1.
In our test, we chose the initial point (zg,y0) = (0.3,0.3) and the parameters
B=0.9, o1 =1075 py =100, ro = 100, 7 = 5000, o = 10, ¢’ =10, ¢ = 107, and
e/ = 1071°, Since the stopping criteria hold, we terminate at the 7th iteration with
(2%, y*) = (0.25,0.5). It seems that the sequence converges to (, 7).
Since

(33 ayk) (erPk (xk)vo) = (_1'550)7
V( )( k ) (_171)3

by virtue of the continuity of the gradients it is easy to see that the vectors
Vi(@,9) = ( lim V7,5).0) and V(9,0)(.5)

are linearly independent. Thus the WNNAMCQ holds at (Z,%), and our algorithm
guarantees that (Z,7) is a stationary point of (CP). Indeed, (Z, %) is the unique global
minimizer of the problem.

Ezample 4.3 (see [31, Example 3.20]). The bilevel program

min F(z,y) := (x — 0.25)2 + ¢/*
1,3 _ 2

st. y € S(x) = argmin f(z,y) := 3y° — 27y
ye[-1,1]

has the optimal solution point (z,7) = (3, 2) with an obJectlve value of 2.
In our test, we chose the parameters 8 = 0.9, o = 1076, po = 100, rg =
100, 7 = 500, ¢ = 10, ¢’ = 10, ¢ = 1077, and ¢’ = 10*10. We chose the initial
point (zo,yo) = (0.3,0.8). Since the stopping criteria hold, we terminate at the 8th
iteration with (2%, y*) = (0.4999996, 0.4999996). It seems that the sequence converges
to (Z,7).
Since

@

Vi@*, y*) - (vfypk («*),0) = (~1.499898,0),
V( )(xkv ) (_171)7

by virtue of the continuity of the gradients it is easy to see that the vectors
V(@) - (lim V9,,(5),0) and V(Y )@ 5)

are linearly independent. Thus the WNNAMCQ holds at (Z,%), and our algorithm
guarantees that (Z,y) is a stationary point of (CP). Indeed, (Z, ) is the unique global
minimizer of the problem.

5. Conclusion. In this paper, we propose a smoothing SQP method for solv-
ing nonsmooth and nonconvex optimization problems with Lipschitz inequality and
equality constraints. The algorithm is applicable even to degenerate constrained op-
timization problems which do not satisfy the GMFCQ, the standard constraint qual-
ification for a local minimizer to satisfy the KKT conditions. Our main motivation
comes from solving the bilevel program which is nonsmooth, nonconvex, and never
satisfies the GMFCQ. In this paper, we have proposed the concept of the WGMFCQ
(equivalently, WNNAMCQ), a weaker version of the GMFCQ, and have shown the
global convergence of the smoothing SQP algorithm under the WGMFCQ. Moreover,
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we have demonstrated the applicability of the smoothing SQP algorithm for solv-
ing the combined program of a simple bilevel program with a nonconvex lower level
problem. For smooth optimization problems, it is well known that the SQP methods
converge very quickly when the iterates are close to the solution. The rapid local
convergence of the SQP is due to the fact that the positive definite matrix Wj, in the
SQP subproblem is an approximation of the Hessian matrix of the Lagrangian func-
tion. For our nonsmooth problem, the Lagrangian function is only locally Lipschitz,
and no classical Hessian matrix can be defined. However, it would be interesting to
study the local behavior of the smoothing SQP algorithm by using the generalized
second order subderivatives [38] of the Lagrangian function. This remains a topic of
our future research.
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