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Abstract: In this paper we derive necessary optimality conditions involving

Mordukhovich coderivatives for optimal control problems of strongly monotone

variational inequalities.

1.1 INTRODUCTION

The optimal control problem for a system governed by an elliptic variational

inequality, �rst proposed by J.L. Lions (1969,1972) and studied in Barbu (1984)

is as follows:

Let V and H be two Hilbert spaces (state spaces) such that

V � H = H� � V �

where V � is the dual of V , H� is the dual of H which is identi�ed with H , and

injections are dense and continuous. Let U be another Hilbert space (control

space). Suppose that A 2 L(V; V �) is coercive, i.e., there exists a constant

� > 0 such that

hAv; vi � �kvk2V 8v 2 V
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where h�; �i is the duality pairing on V ��V and identi�ed with the inner product

on H . The optimal control problem for an elliptic variational inequality is the

following minimization problem:

(P ) min g(y) + h(u)

s.t. y 2 K;u 2 Uad

hAy; y0 � yi � hBu+ f; y0 � yi 8y0 2 K;

where B 2 L(U; V �) is compact, K � V and Uad � U are two closed convex

subsets in V and U respectively, f 2 V �, g : K ! R+ and h : Uad ! R+ are

two given functions.

In this paper we study the following optimal control of strongly monotone

variational inequality which is more general than the one proposed by Lions:

(OCV I) min J(y; u)

s.t. y 2 K;u 2 Uad

hF (y; u); y0 � yi � 0 8y0 2 K;

where the following assumptions are satis�ed

(A1) K and Uad are closed convex subsets of Asplund spaces (which include all

reexive Banach spaces) V and U respectively. There is a �nite codimen-

sional closed subspace M such that Uad �M and the relative interior of

Uad with respect to the subspace M is nonempty.

(A2) J : V � Uad ! R is Lipschitz near (�y; �u).

(A3) F : V �Uad ! V � is strictly di�erentiable at (�y; �u) (see de�nition given in

Remark 2) and locally strongly monotone in y uniformly in u, i.e., there

exist � > 0 and U(�y; �u), a neighborhood of (�y; �u) such that

hF (y0; u)�F (y; u); y0�yi � �ky0�yk2 8(y; u); (y0; u) 2 U(�y; �u)\(K�Uad):

Our main result is the following theorem:

Theorem 1 Let (�y; �u) be a local solution of problem (OCVI). Then there exists

� 2 V such that

0 2 @J(�y; �u) + F 0(�y; �u)�� +D�NK(�y;�F (�y; �u))(�) � f0g+ f0g �N(�u; Uad)

(1.1)

where @ denotes the limiting subgradient (see De�nition 2), F 0 denotes the strict

derivative (see Remark 2), N(�u; Uad) denotes the normal cone of the convex set

Uad at �u and NK denotes the normal cone operator de�ned by

NK(y) :=

�
the normal cone of K at y if y 2 K

; if y 62 K
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and D� denotes the coderivative of a set-valued map (see De�nition 5).

This is in fact in the form of the optimality condition given by Shi (1988,

1990) with the paratingent coderivative of the the set-valued map NK replaced

by the Mordukhovich coderivative.

In the case where J(y; u) = g(y) + h(u) and F (y; u) = Ay � Bu � f as in

problem (P), Inclusion (1.1) becomes

0 2 @g(�y) +A�� +D�NK(�y;�F (�y; �u))(�) (1.2)

0 2 @h(�u)�B�� +N(�u; Uad): (1.3)

Notice that NK(y) = @ K(y), the coderivative of the set-valued map NK can

be considered as a second order generalized derivative of  K . Hence inclusions

(1.2) and (1.3) are in the form of the necessary optimality condition given in

Theorem 3.1 of Barbu (1984) with the Clarke subgradient replaced by the lim-

iting subgradient which is in general a smaller set than the Clarke subgradient

and with the notational second order generalized derivative replaced by the true

second order generalized derivative D�NK .

We organize the paper as follows. x1.2 contains background material on non-

smooth analysis and preliminary results. In x1.3 we derive necessary optimality

conditions for (OCVI).

1.2 PRELIMINARIES

This section contains some background material on nonsmooth analysis which

will be used in the next section. We only give concise de�nitions that will be

needed in the paper. For more detail information on the subject, our references

are Clarke (1983), Mordukhovich and Shao (1996a,b).

First we give some concepts for various normal cones.

De�nition 1 Let 
 be a nonempty subset of a Banach space X and let � � 0.

(i) Given �x 2 cl
, the closure of set 
, the set

N̂�(�x;
) := fx� 2 X� : lim sup
x!�x;x2


hx�; x� �xi

kx� �xk
� �g (1.4)

is called the set of Fr�echel ��normal to set 
 at point �x. When � = 0, the

set (1.4) is a cone which is called the Fr�echel normal cone to 
 at point

�x and is denoted by N̂(�x;
).

(ii) The following nonempty cone

N(�x;
) := fx� 2 X�j9xk ! �x; �k # 0; x
�

k

w�

�! x�; x�k 2 N̂�k(xk ;
)

as k !1g (1.5)

is called the limiting normal cone to 
 at point �x,
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As proved in Mordukhovich and Shao (1996a), in Asplund spaces X the normal

cone (1.5) admits the simpli�ed representation

N(�x;
) = fx� 2 X�j9xk ! �x; x�k
w�

�! x�; x�k 2 N̂(xk ;
) as k !1g

Using the de�nitions for normal cones, we now give de�nitions for subgradi-

ents of a single-valued map.

De�nition 2 Let X be a Banach space and f : X ! R [ f+1g be lower

semicontinuous and �nite at �x 2 X. The limiting subgradient of f at �x is

de�ned by

@f(�x) := fx� 2 X� : (x�;�1) 2 N((�x; f(�x)); epi(f))g

and the singular subdi�erential of f at �x is de�ned by

@1f(�x) := fx� 2 X� : (x�; 0) 2 N((�x; f(�x)); epi(f))g;

where epi(f) := f(x; r) 2 X �R : f(x) � rg is the epigraph of f .

Remark 1 Let 
 be a closed set of a Banach space and  
 denote the indicator

function of 
. Then it follows easily from the de�nition that

@ 
(�x) = @1 
(�x) = N
(�x):

The following fact is also well-known and follows easily from the de�nition:

Proposition 1 Let X be a Banach space and f : X ! R [ f+1g be lower

semicontinuous. If f has a local minimum at �x 2 X, then

0 2 @f(�x):

To ensure that the sum rule holds in an in�nite dimensional Asplund space,

we need the following de�nitions.

De�nition 3 Let X be a Banach space and 
 a closed subset of X. 
 is said

to be sequentially normally compact at �x 2 
 if any sequence (xk ; x
�

k) satisfying

x�k 2 N̂(xk ;
); xk ! �x; x�k
w�

�! 0 as k !1

contains a subsequence with kx�k�k ! 0 as � ! 0:

De�nition 4 Let Let X be a Banach space and f : X ! R [ f+1g be lower

semicontinuous and �nite at �x 2 X. f is said to be sequentially normally

epi-compact around �x if its epigraph is sequentially normally compact at �x.

Proposition 2 Let Let X be a Banach space and f : X ! R [ f+1g be

directionally Lipschitz in the sense of Clarke (1983) at �x 2 X. Then f is

sequentially normally epi-compact around �x.
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Proof. By Proposition 3.1 of Borwein (1987), if f is directionally Lipschitz at �x,

then it is compactly Lipschitz at �x, i.e., its epigragh is compactly epi-Lipschitz

at (�x; f(�x)) in the sense of Borwein and Strojwas (1985). By Proposition 3.7 of

Loewen (1992), a compactly epi-Lipschitz set is sequentially normally compact.

Hence the proof of the proposition is complete.

The following is the sum rule for limiting subgradients.

Proposition 3 [Corollary 3.4 of Mordukhovich and Shao (1996b)] Let X be an

Asplund space, functions fi : X ! R[f1g be lower semicontinuous and �nite

at �x, i = 1; 2 and one of them be sequentially normally epi-compact around �x.

Then one has the inclusion

@(f1 + f2)(�x) � @f1(�x) + @f2(�x)

provided that

@1f1(�x) \ (�@1f2(�x)) = f0g:

For set-valued maps, the de�nition for limiting normal cone leads to the

de�nition of coderivative of a set-valued map introduced by Mordukhovich.

De�nition 5 Let � : X ) Y be an arbitrary set-valued map (assigning to each

x 2 X a set �(x) � Y which may be empty) and (�x; �y) 2 cl gph� where gph�

is the graph of the set-valued � de�ned by

gph� := f(x; y) 2 X � Y : y 2 �(x)g

and cl
 denotes the closure of the set 
. The set-valued map D��(�x; �y) from

Y � into X� de�ned by

D��(�x; �y)(y�) = fx� 2 X� : (x�;�y�) 2 N((�x; �y); gph�)g;

is called the coderivative of � at point (�x; �y). By convention for (�x; �y) 62 clgph�

we de�ne D��(�x; �y)(y�) = ;. The symbol D��(�x) is used when � is single-

valued at �x and �y = �(�x).

Remark 2 Recalled that a single-valued mapping � : X ! Y is called strictly

di�erentiable at �x with the derivative �0(�x) if

lim
x;x0!�x

�(x)� �(x0)� �0(�x)(x � x0)

kx� x0k
= 0

In the special case when a set-valued map is single-valued and � : X ! Y

is strictly di�erentiable at �x, the coderivative coincides with the adjoint linear

operator to the classical strict derivative, i.e.,

D��(�x)(y�) = �0(�x)�y� 8y� 2 Y �;

where �0(�x)� denotes the adjoint of �0(�x).
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The following proposition is a sum rule for coderivatives when one mapping

is single-valued and strictly di�erentiable.

Proposition 4 [Theorem 3.5 of Mordukhovich and Shao (1996b)] Let X;Y be

Banach spaces, f : X ! Y be strictly di�erentiable at �x and � : X ) Y be an

arbitrary closed set-valued map. Then for any �y 2 f(�x) + �(�x) and y� 2 Y �

one has

D�(f +�)(�x; �y)(y�) = f 0(�x)�y� +D��(�x; �y � f(�x))(y�):

1.3 PROOF OF THE NECESSARY OPTIMALITY CONDITION

The purpose of this section is to derive the necessary optimality conditions

involving coderivatives for (OCVI) as stated in Theorem 1.

Proof of Theoerm 1. SinceK is a convex set, by the de�nition of a normal

cone in the sense of convex analysis, it is easy to see that problem (OCVI) can

be rewritten as the optimization problem with generalized equation constraints

(GP):

(GP) min J(y; u)

s.t. (y; u) 2 V � Uad:

0 2 F (y; u) +NK(y);

where

NK(y) :=

�
the normal cone of K at y if y 2 K

; if y 62 K

is the normal cone operator.

Let �(y; u) : V � U ) V � be the set-valued map de�ned by

�(y; u) := F (y; u) +NK(y):

By local optimality of the pair (�y; �u) we can �nd U(�y; �u), a neighborhood of

(�y; �u), such that

J(�y; �u) � J(y�; u) 8(y�; u) 2 U(�y; �u) \ (V � Uad) s.t. 0 2 �(y�; u);

= J(y; u) + J(y�; u)� J(y; u)

8(y�; u) 2 U(�y; �u) \ (V � Uad) s.t. 0 2 �(y�; u);

� J(y; u) + LJky
� � yk

8(y�; u); (y; u) 2 U(�y; �u) \ (V � Uad) s.t. 0 2 �(y�; u)

� J(y; u) +
LJ

�

hF (y�; u)� F (y; u); y� � yi

ky� � yk

8(y�; u); (y; u) 2 U(�y; �u) \ (K � Uad) s.t. 0 2 �(y�; u):

Let y; y� 2 K;u 2 Uad be such that 0 2 �(y�; u) and v 2 �(y; u). Then by

de�nition of the normal cone, we have

hv � F (y; u); y0 � yi � 0 8y0 2 K

h�F (y�; u); y0 � y�i � 0 8y0 2 K:
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In particular one has

hv � F (y; u); y� � yi � 0

h�F (y�; u); y � y�i � 0

which implies that

hv + F (y�; u)� F (y; u); y� � yi � 0:

Hence we have

J(�y; �u) � J(y; u) +
LJ

�
kvk 8(y; u; v) 2 Gr�; (y; u) 2 U(�y; �u) \ (V � Uad):

That is, (�y; �u; 0) is a local solution to the penalized problem of (GP):

min J(y; u) +
LJ

�
kvk

s.t. (y; u) 2 V � Uad:

(y; u; v) 2 Gr�:

Let  
(x) denote the indicate function of 
. Then it is easy to see that (�y; �u; 0)

is a local minimizer of the lower semicontinuous function

f(y; u; v) := J(y; u) +
LJ

�
kvk+  Gr�(y; u; v) +  Uad(u):

It follows from Propositions 1 that

0 2 @f(�y; �u; 0): (1.6)

Since J is Lipschitz near (�y; �u), g(y; u; v) := J(y; u) + LJ
�
kvk is Lipschitz at

(�y; �u; 0). Hence it is directionally Lipschitz by Theorem 2.9.4 of Clarke (1983)

and @1g(�y; �u; 0) = f0g by Proposition 2.5 of Mordukhovich and Shao (1996a).

Consequently by Proposition 3 we have

@f(�y; �u; 0) � @g(�y; �u; 0) + @( Gr� +  Uad)(�y; �u; 0)

� @J(�y; �u)�
LJ

�
B + @( Gr� +  Uad)(�y; �u; 0); (1.7)

where B is the closed unit ball of V . Next we shall prove that

@( Gr� +  Uad)(�y; �u; 0) � @ Gr�(�y; �u; 0) + f0g � @ Uad(�u)� f0g

by using the sum rule Propostion 3. By (vii) of Theorem 1 and Remark 3 of

Borwein, Lucet and Mordukhovich (1998), the assumption (A1) implies that

Uad is compactly Epi-Lipschitz. Hence the epigragh of the function  Uad is also

compactly Epi-Lipschitz. By Proposition 3.7 of Loewen (1992), a compactly

epi-Lipschitz set is sequentially normally compact. Therefore the function  Uad
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is sequentially normlly epi-compact around every point in Uad. Now we check

the condition

@1 Gr�(�y; �u; 0) \ (�f0g � @1 Uad(�u)� f0g) = f0g:

Let (0; �2; 0) 2 @
1 Gr�(�y; �u; 0) \ (�f0g � @1 Uad(�u)� f0g): Then

(0; �2; 0) 2 @
1 Gr�(�y; �u; 0) = NGr�(�y; �u; 0)

So by de�nition of coderivatives,

(0; �2) 2 D
��(�y; �u; 0)(0):

By the sum rule for coderivatives Proposition 4, we have

D��(�y; �u; 0)(0) � F 0(�y; �u)�0 +D�NK(�y;�F (�y; �u))(0)� f0g

which implies that �2 = 0. Hence by Proposition 3 we have

@( Gr� +  Uad)(�y; �u; 0) � @ Gr�(�y; �u; 0) + f0g � @ Uad(�u)� f0g

= NGr�(�y; �u; 0) + f0g �N(�u; Uad)� f0g:(1.8)

By (1.6), (1.7) and (1.8), we have

0 2 @J(�y; �u)�
LJ

�
B +NGr�(�y; �u; 0) + f0g �N(�u; Uad)� f0g:

That is, there exist � 2 LJ
�
B, (�1; �2) 2 @J(�y; �u) and � 2 N(�u; Uad) such that

(��1;��2 � �;��) 2 NGr�(�y; �u; 0):

Hence by the de�nition of coderivatives and the sum rule for coderivatives

Proposition 4, we have

(��1;��2 � �) 2 D��(�y; �u; 0)(�)

� F 0(�y; �u)�� +D�NK(�y;�F (�y; �u))(�) � f0g

The proof of the theorem is complete.
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