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Abstract

We consider C∗-algebras associated with stable and unstable equivalence in hyperbolic dy-
namical systems known as Smale spaces. These systems include shifts of finite type, in which
case these C∗-algebras are both AF-algebras. These algebras have fundamental representations
on a single Hilbert space (subject to a choice of periodic points) which have a number of special
properties. In particular, the product between any element of the first algebra with one from the
second is compact. In addition, there is a single unitary operator which implements actions on
both. Here, under the hypothesis that the system is mixing, we show that the (semi-finite) traces
on these algebras may be obtained through a limiting process and the usual operator trace.

1 Introduction

1.1 Smale Spaces

A Smale space, as defined by David Ruelle [14], is a compact metric space, X, together with a
homeomorphism, ϕ, which is hyperbolic. These include the basic sets of Smale’s Axiom A systems
[17]. Another special case of great interest are the shifts of finite type [1, 8].

Informally, the structure of (X,ϕ) is such that, for each point x in X and each ε > 0 and
sufficiently small, there are sets Xs(x, ε) and Xu(x, ε), called the local stable and unstable sets
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respectively. Their Cartesian product is homeomorphic to a neighbourhood of x (in a canoni-
cal and ϕ-invariant way) and the map ϕ is (uniformly) contracting on the former while ϕ−1 is
contracting on the latter.

The precise axiom for a Smale space is the existence of a map defined on pairs (x, y) in X×X
which are sufficiently close. We have a constant εX > 0 and for x, y in X with d(x, y) ≤ εX , the
image of (x, y) is denoted [x, y]. This map satisfies a number of identities and we refer the reader
to [14] or [9] for a complete discussion. From the map [, ], we then define Xs(x, ε) = {y ∈ X |
d(x, y) < ε, [y, x] = x} and Xu(x, ε) = {y ∈ X | d(x, y) < ε, [x, y] = x}, for any 0 < ε ≤ εX . The
contracting and expanding properties of the map ϕ on Xs(x, ε) and Xu(x, ε) are that there is a
constant 0 < ke < 1 such that

d(ϕ(y), ϕ(z)) ≤ ked(y, z), y, z ∈ Xs(x, ε),

d(ϕ−1(y), ϕ−1(z)) ≤ ked(y, z), y, z ∈ Xu(x, ε),

which are axioms.
There is also a notion of a global stable (unstable) set for a point x, which we denote Xs(x)

(Xu(x)). This is simply the set of all points y ∈ X such that d(ϕn(x), ϕn(y)) → 0 as n →
+∞ (−∞). The collection of sets {Xs(y, δ) | y ∈ Xs(x), δ > 0} forms a neighbourhood base
for a topology on Xs(x) in which it is locally compact and Hausdorff. This is the topology that
we use on Xs(x) (not the relative topology from X). There is an analogous topology on Xu(x).
Briefly, we have two equivalence relations on X which are transverse in some sense. It is this
transversality which lies at the core of the results in [3] and our main result below.

We say that (X,ϕ) is irreducible if, for every (ordered) pair of non-empty open sets U and V ,
there exists an N ≥ 1 such that ϕN (U) ∩ V 6= ∅. Also, we say that (X,ϕ) is mixing if, for every
(ordered) pair of non-empty open sets U and V , there exists an N0 ≥ 1 such that ϕN (U)∩V 6= ∅,
for all N ≥ N0.

An important feature of an irreducible Smale space (X,ϕ) is the existence and uniqueness
of a ϕ-invariant probability measure maximizing the entropy of ϕ, see [16, 4]. We call this the
Bowen measure and denote it by µX , or when the space is obvious, simply µ. It was shown in [16]
(but also see [5] for further discussion) that, as our space is locally a product space, the Bowen
measure is locally a product measure. Specifically, for each x in X, we have measures µs,x and
µu,x defined on Xs(x) and Xu(x), respectively. Secondly, the measure µs,x depends only on the
stable equivalence class of x; that is, if y is in Xs(x), then µs,x = µs,y. (Put another way, we
should be writing µs,X

s(x), but that notation is rather too clumsy.) A similar statement holds
for µu,x. It is worth noting that these measures are not finite, but are regular Borel measures.
Moreover, these satisfy the following conditions.

Theorem 1.1. 1. For all x in X, ε > 0 and Borel sets B ⊂ Xu(x, ε) and C ⊂ Xs(x, ε), we
have

µ([B,C]) = µu,x(B)µs,x(C)

whenever ε is sufficiently small so that [B,C] is defined.

2. For x, y in X, ε > 0 and a Borel set B ⊂ Xu(x, ε), we have

µu,y([B, y]) = µu,x(B),

whenever d(x, y) and ε are sufficiently small so that [B, y] is defined.

3. For x, y in X, ε > 0 and a Borel set C ⊂ Xs(x, ε), we have

µs,y([y, C]) = µs,x(C),

whenever d(x, y) and ε are sufficiently small so that [y, C] is defined.
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4. µs,ϕ(x) ◦ ϕ = λ−1µs,x.

5. µu,ϕ(x) ◦ ϕ = λµu,x.
Here log(λ) is the topological entropy of (X,ϕ).

In future, it will cause no confusion to drop the superscript x. In the case that the Smale
space is a shift of finite type (SFT), the Bowen measure is the same as the Parry measure.

1.2 C∗-algebras

Several C∗-algebras can be constructed from a given Smale space. The construction is originally
due to Ruelle [15]. In the case of a shift of finite type, these algebras were defined and studied
earlier by Krieger, Cuntz and Krieger in [2, 7]. In the more general Smale space setting we refer
the reader to [9, 10, 11]. The algebras that we will be concerned with for a Smale space (X,ϕ)
are known as the stable and unstable algebras.

We consider the groupoid C∗-algebras associated with stable and unstable equivalence. Here,
it is most convenient to consider stable equivalence on unstable sets, since these function as
abstract transversals. Also, it is convenient to have such sets which are ϕ-invariant. So we fix a
finite ϕ-invariant set, P , (the periodic points in an irreducible Smale space are always dense, so
there is a good supply of such sets) and let

Xs(P ) =
⋃
p∈P

Xs(p), Xu(P ) =
⋃
p∈P

Xu(p),

We then define

Gs(X,ϕ, P ) = {(x, y) | x s∼ y, x, y ∈ Xu(P )}
Gu(X,ϕ, P ) = {(x, y) | x u∼ y, x, y ∈ Xs(P )}

These groupoids have topologies, which will be described in detail in section 2, in which they are
étale. We define S(X,ϕ, P ) = C∗(Gs(X,ϕ, P )) and U(X,ϕ, P ) = C∗(Gu(X,ϕ, P )).

We summarize some of the properties of S(X,ϕ, P ) and U(X,ϕ, P ). Both are simple if and
only if (X,ϕ) is mixing. They are both amenable, stable and finite. In the case of a shift of
finite type, each is an AF-algebra. We also point out that the homeomorphism ϕ yields an
automorphism, α, of each of these C∗-algebras: α(a)(x, y) = a(ϕ−1(x), ϕ−1(y)).

Our system of measures µu,x and µs,x provide faithful, semi-finite traces on S(X,ϕ, P ) and
U(X,ϕ, P ) as follows:

∑
x∈P µ

u,x defines a measure on the unit space of Gs(X,ϕ, P ) and the
invariance property 2 of Theorem 1.1 implies that this will be a trace. Again, we will denote this
measure simply by µu. We summarize the following result. A version first appears in [9]. Our
definition of S(X,ϕ,Q), which differs from that in [9], can be found in [10, 12, 6], however, the
proofs used in [9] apply with little alteration.

Theorem 1.2. Let (X,ϕ) be an irreducible Smale space and let P,Q be finite ϕ-invariant subsets
of X. For a ∈ Cc(G

s(X,ϕ,Q)) and b ∈ Cc(G
u(X,ϕ, P )), define

τ s(a) =

∫
Xu(Q)

a(x, x)dµu, and

τu(b) =

∫
Xs(P )

b(x, x)dµs.

Then τ s and τu extend to semi-finite traces on S(X,ϕ,Q) and U(X,ϕ, P ).

3



1.3 Fundamental representation

Here, we choose two finite ϕ-invariant sets, P and Q. We will consider the C∗-algebras S(X,ϕ,Q)
and U(X,ϕ, P ). Define

Xh(P,Q) = Xs(P ) ∩Xu(Q).

(The ‘h’ stands for heteroclinic.) This is a subset of Xu(Q), the unit space of Gs(X,ϕ,Q) and
consists of some stable equivalence classes in that set. Hence, the Hilbert space l2(Xh(P,Q))
admits a natural representation of S(X,ϕ,Q) which we will describe in detail in the next section.
In an analogous way, it also admits a representation of U(X,ϕ, P ). We suppress these repre-
sentations in our notation and simply assume that these C∗-algebras are acting on this Hilbert
space. We also note that Xh(P,Q) is countable and that δx, x ∈ Xh(P,Q) denotes the usual
orthonormal basis. We note that uξ = ξ ◦ ϕ−1 is a unitary operator on the Hilbert space and
implements the automorphisms α of S(X,ϕ,Q) and U(X,ϕ, P ).

This pair of C∗-algebras acting on this Hilbert space possesses a number of interesting features.
We summarize the following results (6.1, 6.2 and 6.3 from [3]).

Theorem 1.3. Let (X,ϕ) be a mixing Smale space and P,Q be finite ϕ-invariants sets.

1. If a is in Cc(G
s(X,ϕ,Q)) and b is in Cc(G

u(X,ϕ, P )), then ab and ba are both finite rank
operators on l2(Xh(P,Q)).

2. If a is in S(X,ϕ,Q) and b is in U(X,ϕ, P ), then ab and ba are both compact operators on
l2(Xh(P,Q)).

3. Assuming that P ∩Q = ∅, if a is in S(X,ϕ,Q) and b is in U(X,ϕ, P ), then

lim
n→+∞

α−n(a)b = lim
n→+∞

bα−n(a) = 0.

4. If a is in S(X,ϕ,Q) and b is in U(X,ϕ, P ), then

lim
n→+∞

‖ αn(a)α−n(b)− α−n(b)αn(a) ‖= 0.

Our main objective in this paper is to study the asymptotic behavior of Tr(αn(a)α−n(b)), for
a in Cc(G

s(X,ϕ,Q)) and b in Cc(G
u(X,ϕ, P )) and relate it to τ s(a) and τu(b).

2 Main Result

We consider the case that (X,ϕ) is a mixing Smale space and show how the above traces on
S(X,ϕ,Q) and U(X,ϕ, P ) are related to asymptotics of the usual trace on B(l2(Xh(P,Q))).
That is, for an operator A on l2(Xh(P,Q)), we have

Tr(A) =
∑

x∈Xh(P,Q)

< Aδx, δx >

This is defined for trace class operators and for positive operators, allowing +∞ as a possible
value.

Theorem 2.1. Let (X,ϕ) be a mixing Smale space with topological entropy log(λ), and let a ∈
S(X,ϕ,Q), b ∈ U(X,ϕ, P ). If either

1. a ∈ Cc(G
s(X,ϕ,Q)) and b ∈ Cc(G

u(X,ϕ, P )), or

2. a and b are both positive
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then
lim

k→+∞
λ−2kTr

(
αk(a)α−k(b)

)
= τ s(a)τu(b).

In the second case, both sides of the equality may be +∞.

To begin the proof, we must describe the topologies on Gs(X,ϕ,Q) and Gu(X,ϕ, P ). We take
the following from [9] or [18]. To consider the former, suppose that (x, y) is in Gs(X,ϕ,Q). It
follows that for some positive integer n, ϕn(y) ∈ Xs(ϕn(x, εX/2). Then the function

hs(z) = ϕ−n[ϕn(z), ϕn(x)]

sends y to x. It is also defined on Xu(y, δ) for some δ > 0 and is a homeomorphism to its image
in Xu(x, εX), which is open. Finally, we have that hs(z) is stably equivalent to z for all z in the
domain. We define

Xs(x, y, δ) = {(hs(z), z) | z ∈ Xu(y, δ), hs(z) ∈ Xu(x, δ)}.

We have (x, y) ∈ Xs(x, y, δ) ⊂ Gs(X,ϕ,Q). Such sets (allowing x, y, δ to vary) form a neigh-
bourhood base for the topology of Gs(X,ϕ,Q). The topology on Gu(X,ϕ, P ) is defined in an
analogous way via functions denoted hu and sets Xu(x, y, δ), respectively.

The representation of S(X,ϕ,Q) is as follows, the representation of U(X,ϕ, P ) is completely
analogous. Let a be a function with compact support in Xs(x, y, δ), so that a is in Cc(G

s(X,ϕ,Q).
In fact, every element of Cc(G

s(X,ϕ,Q) is a sum of such functions. For w ∈ Xh(P,Q), we have

aδw(x) =
∑

(x,y)∈Gs(X,ϕ,Q)

a(x, y)δw(y) =

{
a(hs(w), w)δhs(w) if w ∈ Xu(y, δ), hs(w) ∈ Xu(x, δ)

0 if w /∈ Xu(y, δ)

For convenience, we now extend the class of functions that we consider on Gs(X,ϕ,Q),
Gu(X,ϕ, P ). As in Chapter II of [13] we consider the set of bounded Borel functions with
compact support on these groupoids, denoted B(Gs(X,ϕ,Q)) (B(Gu(X,ϕ, P )) respectively).
With convolution and involution defined as for the continuous functions, B(Gs(X,ϕ,Q)) is a
∗-algebra. Furthermore, every representation of Cc(G

s(X,ϕ,Q)) extends to a representation of
B(Gs(X,ϕ,Q)). This allows us to consider Tr(a) where a ∈ B(Gs(X,ϕ,Q)). Moreover, since
B(Gs(X,ϕ,Q)) consists of integrable functions, we can make the following definition.

Definition 2.2. For a ∈ B(Gs(X,ϕ,Q)) and b ∈ B(Gu(X,ϕ, P )), define

Is(a) =

∫
Xu(Q)

a(x, x)dµu, and

Iu(b) =

∫
Xs(P )

b(x, x)dµs.

We start with the following lemma.

Lemma 2.3. Let (X,ϕ) be a mixing Smale space. Let a ∈ B(Gs(X,ϕ,Q)) be supported on a set
of the form Xs(xa, ya, δa), and b ∈ B(Gu(X,ϕ, P )) supported on Xu(xb, yb, δb). We use hsa and
hub to denote the two functions as above. Let Xa = r(X(xa, ya, δa)), Xb = s(X(xb, yb, δb)), where
r, s are the two canonical maps from Gs(X,ϕ,Q) to Xu(Q). If hsa = id and hub = id, then for
each k ∈ N

Tr(αk(a)α−k(b)) =
∑

w∈ϕk(Xa)∩ϕ−k(Xb)

a(ϕ−k(w), ϕ−k(w))b(ϕk(w), ϕk(w))

otherwise
lim

k→+∞
Tr(αk(a)α−k(b)) = 0
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Proof: If x 6= hsa(y), a(x, y) = 0. to simplify notation, let a(y) = a(hsa(y), y). Similarly, let
b(y) = b(hub (y), y). Now

Tr(αk(a)α−k(b)) =
∑

w∈Xh(P )

< αk(a)α−k(b)δw, δw >

=
∑

w∈Xh(P )

a(ϕ−2khubϕ
k(w))b(ϕk(w)) < δϕkhs

aϕ
−2khu

bϕ
k(w), δw > .

Suppose hsa = hub = id, then we have

Tr(αk(a)α−k(b)) =
∑

w∈Xh(P )

a(ϕ−k(w))b(ϕk(w)) < δw, δw > .

Moreover, a(ϕ−k(w)) 6= 0 only if w ∈ ϕk(Xa), and b(ϕk(w)) 6= 0 only if w ∈ ϕ−k(Xb), so

Tr(αk(a)α−k(b)) =
∑

w∈ϕk(Xa)∩ϕ−k(Xb)

a(ϕ−k(w))b(ϕk(w)).

Now suppose hsa 6= id.

Tr(αk(a)α−k(b)) =
∑
w∈Ek

a(ϕ−2khubϕ
k(w))b(ϕk(w)) < δϕkhs

aϕ
−2khu

bϕ
k(w), δw >,

where

Ek = {w ∈ Xh(P )| ϕk(w) ∈ Xb, ϕ
−2khubϕ

k(w) ∈ Xa, ϕ
khsaϕ

−2khubϕ
k(w) = w}.

We show that for large enough k, the set Ek is empty. We can find δ > 0 such that

d(z, hsa(z)) > δ

for all z ∈ Xa. Now, we can find K sufficiently large so that for all k > K we have

d(ϕ−2k(y), ϕ−2khub (y)) < δ

for all y ∈ Xb. So for w ∈ Ek, ϕk(w) ∈ Xb and thus

d(ϕ−k(w), ϕ−2khub (ϕk(w))) < δ

but ϕ−2khub (ϕk(w)) ∈ Xa so

d(ϕ−2khub (ϕk(w)), hsaϕ
−2khub (ϕk(w))) > δ

so ϕ−k(w) 6= hsaϕ
−2khub (ϕk(w)), contradicting w ∈ Ek. Hence for large k, Ek is empty and

Tr(αk(a)α−k(b)) = 0.

A similar argument gives the result in the case hub 6= id.

Lemma 2.4. Let (X,ϕ) be a mixing Smale space. Let a ∈ B(Gs(X,ϕ,Q)) and
b ∈ B(Gu(X,ϕ, P )) be step functions. Then

lim
k→∞

λ−2kTr(αk(a)α−k(b)) = Is(a)Iu(b).
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Proof: By Lemma 2.3 we can assume, without loss of generality that a(x, y) = 0 whenever
x 6= y, and b(x, y) = 0 if x 6= y. We therefore consider a(x, x) to be supported on A ⊂ Xs(xa),
and similarly with b.

Let {Aj}∞j=1 be precompact sets on which a is constant, and aj the value on Aj . Similarly
{Bj}∞j=1 and bj . Then for each k we have

Is(a) =

∞∑
j=1

µu(Aj)aj

Iu(b) =
∞∑
j=1

µu(Bj)bj

Tr(αk(a)α−k(b)) =
∑
j

∑
l

#hkj,lajbl

Where hkj,l = ϕk(Aj) ∩ ϕ−k(Bl). From Theorem 2.4 of [5] we know that

lim
k→∞

λ−2khkj,l = µu(Aj)µ
s(Bl).

So

lim
k→∞

λ−2kTr(αk(a)α−k(b)) =
∑
j

∑
l

lim
k→∞

λ−2k#hkj,lajbl

=
∑
j

∑
l

µu(Aj)µ
s(Bl)ajbl

= (
∑
j

µu(Aj)aj)(
∑
l

µs(Bl)bl)

= Is(a)Iu(b).

Proof of Theorem 2.1: We start with the special case that a ∈ Cc(G
s(X,ϕ,Q)) and b ∈

Cc(G
u(X,ϕ, P )) are both positive. Lemma 2.3 allows us to assume, without loss of generality,

that a(x, y) = 0 whenever x 6= y, and b(x, y) = 0 if x 6= y.
We find bounded Borel step functions with compact support al, au and bl, bu such that

al ≤ a ≤ au, bl ≤ b ≤ bu,
Is(al) + ε > τ s(a) > Is(au)− ε, and Iu(bl) + ε > τu(b) > Iu(bu)− ε.

For each k

λ−2kTr
(
αk(al)α

−k(bl)
)
≤ λ−2kTr

(
αk(a)α−k(b)

)
≤ λ−2kTr

(
αk(au)α−k(bu)

)
.

So, by Lemma 2.4, in the limit as k →∞ we have

Is(al)I
u(bl) ≤ lim

k→∞
λ−2kTr

(
αk(a)α−k(b)

)
≤ Is(au)Iu(bu).

Therefore, for all ε > 0, we have

(τ s(a)− ε) (τu(b)− ε) < lim
k→∞

λ−2kTr
(
αk(a)α−k(b)

)
< (τ s(a) + ε) (τu(b) + ε) .
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Hence, we conclude

lim
k→∞

λ−2kTr
(
αk(a)α−k(b)

)
= τ s(a)τu(b).

To prove case (1) of the theorem (the Cc case) we simply apply the above argument separately
to the positive/negative parts of the real/imaginary components of a, b.

Now suppose a, b are positive. If τ s(a) and τu(b) are finite, then as above we can approximate
above and below with (integrable) step functions, and by Lemma 2.4, the theorem holds. Now
suppose one of the traces is not finite. Without loss of generality, assume τ s(a) = +∞. We can
then find {ai} such that ai ≤ a, ai increasing, ai ∈ Cc(G

s(X,ϕ,Q)) positive, and τ s(ai) ≥ i.
Similarly choose {bi} (if b ∈ Cc(G

u(X,ϕ, P )), choose bi = b for all i). Then we have

lim
k→∞

λ−2kTr(αk(a)α−k(b)) ≥ lim
k→∞

λ−2kTr(αk(ai)α
−k(bi))

= τ s(ai)τ
u(bi)

≥ iτu(b1).

As this holds for any i ∈ Z, we have

lim
k→∞

λ−2kTr(αk(a)α−k(b)) =∞ = τ s(a)τu(b).
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