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Etale equivalence relations

A local homeomorphism, ¢, of X is a homeo-

morphism from one open subset of X to an-
other.

Recall that ¢ C X x X, so in usual notation ¢ :
d(¢p) — r(¢), where d,r be the two canonical
projections from X x X to X.



A local action, F, is collection of local home-
omorphisms such that:

1. {U C X | idy € F} is a neighbourhood base
for X.

2. if pisin F, sois ¢ 1,

3. if p,¢ are in F, SO is p o1,
4. if o, are in F, so is ¢ Na.

It follows from the first three conditions that

R=UF ={(z,¢(x)) | ¢ € F,x € d(p)}

IS an equivalence relation.

The fourth implies that F is a basis for a topol-
ogy of R. We assume that this topology is sec-
ond countable. As a consequence the equiva-
lence classes are countable.

Such an equivalence relation, with this topol-
ogy, is called étale.



Example 1.

If © is a free action of GG on X, then let
F={o°|U|seGUC X open }.
and
(z,5) € X X G = (z,9°(z)) € Ry

IS @ homeomorphism.
Example 2.

X =[0,1] and R= AxU{(1,0),(0,1)}. There
IS no topology on R which makes it étale.



We say that R is minimal if every equivalence
class is dense. (Does not need topology.)

A measure p on X is R-invariant if

n(d(p)) = p(r(e)),
for every ¢ in F. (Depends only on R).

(X1, R1) and (X», R») are orbit equivalent, writ-
ten R1 ~ Ry, if there is a homeomorphism
h : X1 — X5 such that A x h(R1) = Ry or
h[ZC]Rl = [h(m)]RQ for all x in X;.

Rq1 and R» are isomorphic, written R{ & R» if,
in addition, h x h : R{ — R> is a homeomor-
phism.



C*-algebras

If X is a compact, Hausdorff space, then

C(X)={f: X —C| f continuous }

is a commutative, unital C*-algebra.

Every commutative, unital is x-isomorphic to
C(X), for some compact Hausdorff space X.

If (X,R) is an étale equivalence relation, then
C*(X, R) is a natural C*-algebra which replaces
C(X/R). (Usually, X/R is a 'bad’ space.)



Consider C.(R) with the obvious linear struc-
ture and product

(z,2)ER
and involution f*(x,y) = f(y,x).

Then endow C.(R) with a norm and complete.

Example 1: X compact, Hausdorff, R = equal-
ity. C*(X,R) =C(X) =C(X/R).

Example 2: X ={1,2,...,N}, R= X x X.
C*(X, R) & Mx(C).

Generally, f € C(X) — fxa € C*(X,R) is a
homomorphism.



For general X, R, the formula for the product
on C:.(R):

(z,2)ER
has problems.

Example 3: X =[0,1] R=AU{(0,1),(1,0)}.

X{(0,1)}X{(1,0)} = X{(0,0)}
which is not a continuous function on R.

The condition that R is étale is exactly what
IS needed for this to be well-defined.



Example 5. X compact, ¢ an action of G.

Fix a p-invariant measure on X. Hilbert space
L2(X) with operators

f-&(x) = f(z)é(z), f € C(X),
and

ua§ = &0 % a€G.

If the action is free and minimal,

C*(X,R) =C*"{f,uq | f € C(X),a € G}.

Identifying R and X x G, ua = Xx x{a}-



AF equivalence relations

A Bratteli diagram is a vertex set V = VpuV7 U
...and an edge set £ = F{UE>U... with initial
and terminal maps ¢ : En — V_1,t . En — V.
Each Vi, and E, are finite with Vj = {vg}.

Vo

En

i(e) 1
e E-
t(e) V2
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Let X be the set of infinite paths from vg:

X = {(z1,22,...) | 2n € En,t(zn) = i(zpe1)}

Relative topology from X C N, Ey,.
If p=(p1,p2,...,pyN) IS A finite path, we let

C(p) ={w € X | &n =pn,1 <n < N},

which is clopen.

For paths p, ¢ of length N, with t(pn) = t(gn),
define ¢ : C(p) — C(q) by

©(P1,P2, - s PNy TN+1, TN425 - - -)
= (91,92, - AN TN41, TN 425 - - -)-

The set of all such ¢ is a local action, F.
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R is tail equivalence:

(z,y) € R< dN,zp = yn,n > N.

For fixed IV, let

(z,y) € Ry & xn = yn,n > N.
We have

RiCRyC- -+, R=UxnNRpN.

and each Ry is a compact, open subequiva-
lence relation.

T his makes them tractible, but rich.
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Invariant measures for AF-equivalence relations.

We want to assign a measure to each clopen
set. Clopen sets are the union of cylinder sets.

If p and ¢ are paths with t(p) = t(q), then there
is a local homeomorphism ¢ : C(p) — C(q) so

n(C(p)) = u(C(q)); in other words, u(C(P))
depends only on t(p).

u(C(p)) = w(t(p)).

We require w(vg) = 1,w(v) = Zi(e):vw(t(e)).

There is a bijection between R-invariant mea-
sures p and such functions w: V — [0, 1].
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K-theory.
A, unital C*-algebra, Kg(A) abelian group
Flat earth version:

*

projections p in A: p2 = p = p*,

p ~ q: there exists v in A, v*v = p,vv* = ¢q, or

if there exists u in A, upu~! = g,

If pg = 0O, then p 4 q is a projection. p = 0 is
the indentity.

Order p > q if pg = gq.
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Example: X ={1,...,N}, R= X x X, My(C).

1. Every projection is similar to one in C(X)
(i.e. diagonal).

2. Two projections are similar if and only if
they have the same rank, or the same trace.

Thus

Ko(MnN(C)) = Z,p — Rank(p).
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Example: (X,R) AF.

1. Every projection is similar to one in C(X):
xu, U clopen. Generated by xc(,)'s.

2. If t(p) = t(q), ¢ : C(p) — C(q). Exercise:
¢ C R is compact, open and

XZZX@ — XC(q)’ XSOXs*o — XC(p)
[xc(p)] is determined by ¢(p).

If 1 is an invariant measure, define 7 : Co.(R) —
C by

() = [_f@.2)du(a),

satisfies 7(fg) = 7(gf) (trace property) and
gives

7. Ko(C*(X,R)) — R.
and the range is
{u(U) | U C X clopen } 4+ Z.
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Example 1

First, there is a unique invariant measure given
by w(vy) =27,

71 Ko(C*(X,R)) & {p2~ " |peZ,kecZT}.

Example 2

7: Ko(C*(X,R)) 2 7Z+4+~Z CR.

where ~ is the golden mean.
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What is different from the case of My (C) is
that 7(p) = 7(q) does not imply p ~ gq.

Example 3
o’ ® [
KX
€ [ @

7: Ko(C*(X,R)) = {p27 137 % | pez,k > 0}.

has kernel Z([xc(e)l — [xcoen]), e e’ the two
edges in F1.
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Theorem 1 (Elliott-Krieger). Let (V*, EY),i =
1,2 be two Bratteli diagrams with associated
AF-relations, (X;,R;),i=1,2. TFAE:

1. the two diagrams may be “intertwined”

2. (X1,R1) = (X2, Rp)

3. C*(X1,R1) = C*"(X2, Rp)

4. Ko(C*(X1,R1)) = Ko(C*(X2,Rp)) as or-
dered abelian groups with order unit.
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Theorem 2 (Absorption Theorem). Let (X, R)
be a minimal AF-relation. Suppose thatY C X
and () is an AF-relation on Y satisfying:

1. Y isclosed and u(Y') = O, for all R-invariant
L.

2. other technical conditions,
Then the equivalence relation generated by R

and Q, R= RV Q, is orbit equivalent to R:

RVQ~ R.
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In general, if R C R are both AF, then
Ko(C*(X,R)) is a quotient of Kg(C*(X,R));
both are generated by projections in C(X), but
the former has more equivalences.

AlsO, we have seen

7: Ko(C*(X,R)) - {u(U) | U C X clopen }+7Z
IS a quotient.

For R minimal, this can be realized by an R C
R, also AF, such that

R=RVQ(A.T.= R~ R),

Combining with the Elliott-Krieger Theorem,
we get:

Corollary 3. For minimal, uniquely ergodic AF-
equivalence relations

{uw(U) |U C X clopen } +7Z

iIs a complete invariant for orbit equivalence.
22



Theorem 4. Let ¢ be a minimal Z-action on
a Cantor set X. Choose y in X and let R C
R, be the equivalence relation generated by
{(z,0Y(2)) | z # y}. Then R is a minimal AF-
relation and

Ry = RV (y, 9 (v)).

Let

Y ={y,0'(¥)}, Q=Y xY
‘The Absorption Theorem implies that Ry, ~ R.

Theorem 5 (Giordano-P-Skau, 1991). For min-

imal uniquely ergodic AF-relations and Z-actions,
(X, R),

{uw(U) |U C X clopen } +7Z

iIs a complete invariant for orbit equivalence.
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