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Tiling cohomology means: how various types

of cohomology theories from algebraic topol-

ogy may be fruitfully used in the study of ape-

riodic order.

This talk is:

1. Not for experts.

2. Very informal.

3. Not very precise.
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How did topology get into tilings?

Periodicity, aperiodicity and almost periodicity
of tilings involves translations in some sense.
Instead of looking at a single tiling, the dy-
namics person wants an ensemble of tilings
and each translation gives a self-map of this
collection.

Success comes when this ensemble can be made
into a finite measure space or compact topo-
logical space.

In the case of tilings, this happens in many of
cases.

1. Take a single tiling, T , all translates of it,
put a metric on them and complete, ΩT .

2. Take all tilings which are constructed from
the same substitution rule, local matching rule,
etc, and find a metric on them all, Ω.

The result is called the hull.
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What is the cohomology of a space X?

(Be prepared not to like it.)

1. Take a finite open cover U of X.

2. Associated to U is a simplicial complex:

vertices are the elements of U, edges are non-

empty intersections of two elements of U, . . .

3. Take the cohomology of the simplicial com-

plex.

4. Refine the open cover, get an inductive

system of cohomologies and take the limit.

Can it be done for a hull Ω? What will it tell

us?
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Is it really that bad?

If we have some polygons, attached to each
other along their edges with resulting space
X, the computation gets a little easier:

C0 = {f : vertices→ Z}
C1 = {f : edges→ Z}
C2 = {f : faces→ Z}

There are maps ∂i : Ci → Ci+1. For f :
vertices→ Z,

∂0(f)(E) = f(t(E))− f(i(E)),

where i(E) and t(E) are the start and end of
the edge E. For f : edges→ Z:

∂1(f)(F ) =
∑

E an edge of F

±f(E).

Hi(X) ∼= ker(∂i)/Im(∂i−1).
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Can we compute H∗(Ω)?

One very nice property of cohomology: if the

space X is an inverse limit:

X = limX0
f0← X1

f1← X2
f2←

then

H∗(X) = limH∗(X0)
f∗0→ H∗(X1)

f∗1→ H∗(X2)
f∗2→

This helps! Tiling spaces are inverse limits:

Anderson-Putnam (Substitutions), Bellissard-

Benedetti-Gambaudo, Gähler-Sadun.

For substitutions, the computations can be done!

Xn is the same for all n: take all the tiles,

attach one to another if they ever appear at-

tached in that way in a tiling and fn is just the

substitution map. (With border forcing.)

Penrose: H0(Ω) ∼= Z, H1(Ω) ∼= Z5, H2(Ω) ∼=
Z8.
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Computing cut-and-project examples

A machine for computing cohomology for cut-

and-project systems was developed by Forrest,

Hunton and Kellendonk. The key new data is

the torus parameterization:

π : ΩT → Td+N .

Works effectively for the standard window, need

the information of where the faces of the d+N

cube intersect. The answer is given in terms

of a spectral sequence.

For both substitutions and cut-and-project sys-

tems, Franz Gähler has produced very impres-

sion computer calculations (Hk(ΩT )
∼= Z1200!).

Why compute H∗(Ω)?

Short answer: H∗(Ω) is (alleged to be) a quan-

titative measure of aperiodicity.
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Homology vs. cohomology and the peri-

odic case

Suppose that T a completely periodic tiling of

Rd. Let

Per(T ) = {x ∈ Rd | T − x = T }.

ΩT is all translations of T and is Rd/Per(T ).

H1(ΩT ) consists of loops in ΩT . How do you

find a loop of tilings? Suppose x is in Per(T ).

Then

T x(t) = T − tx,0 ≤ t ≤ 1,

is a loop of tilings since T x(0) = T x(1). In

fact,

x ∈ Per(T )→ T x ∈ H1(Ω)

is an isomorphism.

What happens if T is aperiodic? H1(Ω) =???,

but H∗(Ω) is still interesting.
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A De Rham theorem

Let T be a tiling of RN . A function f : RN → A

is T -equivariant if, there is a constant R > 0
such that, for any x, y in RN ,

(T − x) ∩B(0, R) = (T − y) ∩B(0, R)
⇒ f(x) = f(y).

Let Ck
T denote the set of all smooth differ-

ential forms of degree k on RN which are T -
equivariant.

C0
T (R

2) = {f(x, y), T − equivariant}
C1
T (R

2) = {P (x, y)dx + Q(x, y)dy, T − equiv.}
C2
T (R

2) = {g(x, y)dxdy, T − equivariant}

Notice d : Ck
T → Ck+1

T . Let

Hk
T (R

N) = ker(d)/Im(d).

J. Kellendonk -P.:

H∗T (R
N) ∼= H∗(ΩT , R).
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Shouldn’t these invariants be geometric?

For the Penrose tilings, H1(Ω) ∼= Z5; doesn’t

look like a quantitative measure of aperiodicity.

If ω is in Ck
T , we can take

τ(ω) = lim
R

vol(R)−1
∫
|x|≤R

ω(x)dx ∈ Λk(RN)

We get, in particular,

H1(ΩT )→ H1(ΩT , R) ∼= H1
T

τ→ (RN)∗ ∼= RN .

In the Penrose case, the image is generated by

the fifth-roots of 1. (This subgroup of R2 is

rank 4, so the map has Z as a kernel.)

If T is completely periodic, then the image of

H1(ΩT ) is the dual lattice of Per(T ).

Periodic ⇒ lattice. Aperiodic ⇒ dense in RN?
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Clark & Sadun: Look at H1(Ω, Rd).

Recall Ω is an inverse limit: X0 assembled from

the polyhedra in the tiling; it codes the com-

binatorics, but not the geometry.

Recall C1 = {f : Edges→ Rd}. The tiling itself

does this! It is the geometry of the tiles. What

does ∂1f = 0 mean? At every face F ,

0 = ∂1f(F ) =
∑

E⊂F

±f(E).

The edges sum to zero just means that these

vectors form the boundary of a tile.

Small elements of ker(∂1) ⊂ C1 determine a

deformation of the tiling T . The new tiling is

mutually locally derivable with the original if

and only if the element is a co-boundary; i.e.

it is zero in H1.

10


