A brief survey of tiling cohomology

Ian F. Putnam, University of Victoria

Tiling cohomology means: how various types of cohomology theories from algebraic topology may be fruitfully used in the study of aperiodic order.

This talk is:

- 1. Not for experts.
- 2. Very informal.
- 3. Not very precise.

How did topology get into tilings?

Periodicity, aperiodicity and almost periodicity of tilings involves translations in some sense. Instead of looking at a single tiling, the dynamics person wants an ensemble of tilings and each translation gives a self-map of this collection.

Success comes when this ensemble can be made into a **finite** measure space or **compact** topological space.

In the case of tilings, this happens in many of cases.

1. Take a single tiling, \mathcal{T} , all translates of it, put a metric on them and complete, $\Omega_{\mathcal{T}}$.

2. Take all tilings which are constructed from the same substitution rule, local matching rule, etc, and find a metric on them all, Ω .

The result is called the hull.

What is the cohomology of a space X?

(Be prepared not to like it.)

1. Take a finite open cover \mathcal{U} of X.

2. Associated to \mathcal{U} is a simplicial complex: vertices are the elements of \mathcal{U} , edges are nonempty intersections of two elements of \mathcal{U} , ...

3. Take the cohomology of the simplicial complex.

4. Refine the open cover, get an inductive system of cohomologies and take the limit.

Can it be done for a hull $\Omega?$ What will it tell us?

Is it really that bad?

If we have some polygons, attached to each other along their edges with resulting space X, the computation gets a little easier:

$$C^{0} = \{f : \text{vertices} \to \mathbb{Z}\}$$

$$C^{1} = \{f : \text{edges} \to \mathbb{Z}\}$$

$$C^{2} = \{f : \text{faces} \to \mathbb{Z}\}$$

There are maps $\partial_i : C^i \to C^{i+1}$. For $f : vertices \to \mathbb{Z}$,

$$\partial_0(f)(E) = f(t(E)) - f(i(E)),$$

where i(E) and t(E) are the start and end of the edge E. For $f : edges \to \mathbb{Z}$:

$$\partial_1(f)(F) = \sum_{E \text{ an edge of } F} \pm f(E).$$

 $H^i(X) \cong \ker(\partial_i)/Im(\partial_{i-1}).$

Can we compute $H^*(\Omega)$?

One very nice property of cohomology: if the space X is an inverse limit:

$$X = \lim X_0 \stackrel{f_0}{\leftarrow} X_1 \stackrel{f_1}{\leftarrow} X_2 \stackrel{f_2}{\leftarrow}$$

then

$$H^*(X) = \lim H^*(X_0) \xrightarrow{f_0^*} H^*(X_1) \xrightarrow{f_1^*} H^*(X_2) \xrightarrow{f_2^*}$$

This helps! Tiling spaces are inverse limits: Anderson-Putnam (Substitutions), Bellissard-Benedetti-Gambaudo, Gähler-Sadun.

For substitutions, the computations can be done! X_n is the same for all n: take all the tiles, attach one to another if they ever appear attached in that way in a tiling and f_n is just the substitution map. (With border forcing.)

Penrose: $H^0(\Omega) \cong \mathbb{Z}, H^1(\Omega) \cong \mathbb{Z}^5, H^2(\Omega) \cong \mathbb{Z}^8$.

Computing cut-and-project examples

A machine for computing cohomology for cutand-project systems was developed by Forrest, Hunton and Kellendonk. The key new data is the torus parameterization:

$$\pi: \Omega_{\mathcal{T}} \to \mathbb{T}^{d+N}.$$

Works effectively for the standard window, need the information of where the faces of the d+Ncube intersect. The answer is given in terms of a spectral sequence.

For both substitutions and cut-and-project systems, Franz Gähler has produced very impression computer calculations $(H^k(\Omega_T) \cong \mathbb{Z}^{1200}!)$.

Why compute $H^*(\Omega)$?

Short answer: $H^*(\Omega)$ is (alleged to be) a quantitative measure of aperiodicity.

Homology vs. cohomology and the periodic case

Suppose that \mathcal{T} a completely periodic tiling of \mathbb{R}^d . Let

$$Per(\mathcal{T}) = \{ x \in \mathbb{R}^d \mid \mathcal{T} - x = \mathcal{T} \}.$$

 $\Omega_{\mathcal{T}}$ is all translations of \mathcal{T} and is $\mathbb{R}^d/Per(\mathcal{T})$.

 $H_1(\Omega_T)$ consists of loops in Ω_T . How do you find a loop of tilings? Suppose x is in Per(T). Then

$$\mathcal{T}^x(t) = \mathcal{T} - tx, 0 \le t \le 1,$$

is a loop of tilings since $\mathcal{T}^x(0) = \mathcal{T}^x(1)$. In fact,

$$x \in Per(\mathcal{T}) \to \mathcal{T}^x \in H_1(\Omega)$$

is an isomorphism.

What happens if \mathcal{T} is aperiodic? $H_1(\Omega) = ???$, but $H^*(\Omega)$ is still interesting.

A De Rham theorem

Let \mathcal{T} be a tiling of \mathbb{R}^N . A function $f : \mathbb{R}^N \to A$ is \mathcal{T} -equivariant if, there is a constant R > 0 such that, for any x, y in \mathbb{R}^N ,

$$(\mathcal{T} - x) \cap B(0, R) = (\mathcal{T} - y) \cap B(0, R)$$

$$\Rightarrow \qquad f(x) = f(y).$$

Let C_T^k denote the set of all smooth differential forms of degree k on \mathbb{R}^N which are \mathcal{T} -equivariant.

$$C^{0}_{\mathcal{T}}(\mathbb{R}^{2}) = \{f(x,y), \mathcal{T} - \text{equivariant}\} \\ C^{1}_{\mathcal{T}}(\mathbb{R}^{2}) = \{P(x,y)dx + Q(x,y)dy, \mathcal{T} - \text{equiv.}\} \\ C^{2}_{\mathcal{T}}(\mathbb{R}^{2}) = \{g(x,y)dxdy, \mathcal{T} - \text{equivariant}\}$$

Notice
$$d : C_{\mathcal{T}}^k \to C_{\mathcal{T}}^{k+1}$$
. Let
 $H_{\mathcal{T}}^k(\mathbb{R}^N) = \ker(d)/Im(d).$

J. Kellendonk -P.:

$$H^*_{\mathcal{T}}(\mathbb{R}^N) \cong H^*(\Omega_{\mathcal{T}},\mathbb{R}).$$

Shouldn't these invariants be geometric?

For the Penrose tilings, $H^1(\Omega) \cong \mathbb{Z}^5$; doesn't look like a quantitative measure of aperiodicity.

If ω is in C_T^k , we can take

$$\tau(\omega) = \lim_{R} vol(R)^{-1} \int_{|x| \le R} \omega(x) dx \in \Lambda^{k}(\mathbb{R}^{N})$$

We get, in particular,

$$H^{1}(\Omega_{\mathcal{T}}) \to H^{1}(\Omega_{\mathcal{T}}, \mathbb{R}) \cong H^{1}_{\mathcal{T}} \xrightarrow{\tau} (\mathbb{R}^{N})^{*} \cong \mathbb{R}^{N}.$$

In the Penrose case, the image is generated by the fifth-roots of 1. (This subgroup of \mathbb{R}^2 is rank 4, so the map has \mathbb{Z} as a kernel.)

If \mathcal{T} is completely periodic, then the image of $H^1(\Omega_{\mathcal{T}})$ is the dual lattice of $Per(\mathcal{T})$.

Periodic \Rightarrow lattice. Aperiodic \Rightarrow dense in \mathbb{R}^N ?

Clark & Sadun: Look at $H^1(\Omega, \mathbb{R}^d)$.

Recall Ω is an inverse limit: X_0 assembled from the polyhedra in the tiling; it codes the combinatorics, but not the geometry.

Recall $C^1 = \{f : Edges \to \mathbb{R}^d\}$. The tiling itself does this! It is the geometry of the tiles. What does $\partial_1 f = 0$ mean? At every face F,

$$0 = \partial_1 f(F) = \sum_{E \subset F} \pm f(E).$$

The edges sum to zero just means that these vectors form the boundary of a tile.

Small elements of $\ker(\partial_1) \subset C^1$ determine a deformation of the tiling \mathcal{T} . The new tiling is mutually locally derivable with the original if and only if the element is a co-boundary; i.e. it is zero in H^1 .