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Abstract

We continue research on generalized macroscopic models of conservation type as started in [15]. In
this paper we keep the characteristic (for traffic) nonlocality removed in [15] by Taylor expansion and
discuss the merits and problems of such an expansion. We observe that the models satisfy maximum
principles and conclude that “triggers” are needed in order to cause traffic jams (braking waves)
in traffic guided by such models. Several such triggers are introduced and discussed. The models
are refined further in order to properly address non-monotonic (in speed) traffic regimes, and the
inclusion of an individual reaction time is discussed in the context of a braking wave. A number of
numerical experiments are conducted to exhibit our findings.

1 Introduction

In [15] we derived macroscopic models of Aw-Rascle [1] and Zhang [33] (and related) type from Vlasov-
type kinetic models and explored their properties. In this sequel we revisit and refine these models,
analyse them further and present a number of numerical simulations. As in [15] we start with a
quite general kinetic equation of Vlasov-type and arrive at corresponding moderate to high density
macroscopic models by inserting the ansatz f(z,v,t) = p(z,t)d(v — u(z,t)). The models inherit time
delays (due to reaction times) and nonlocalities (due to driver behaviour) from the microscopic (or
kinetic) assumptions.

In [15] we ignored individual reaction times but included nonlocal behaviour (which, we believe, is
the most essential feature in traffic interactions). The corresponding macroscopic models look promising
but are hardly accessible to standard analytical techniques. Therefore, we eliminated the nonlocalities
by Taylor expansions, truncating after second order terms (a questionable step, as the displacement
distances arising in the nonlocal terms can be significant). The resulting system of equations (con-
tinuity equation, plus two types of momentum equations depending on whether one is in a braking
or acceleration scenario) were found to possess traveling wave solutions that seem to reflect well how
braking or acceleration waves propagate in dense traffic.

In the present paper we revisit these issues. Specifically, we address the following in Section 2.

e We include the individual reaction time in our analysis. This leads to a minor modification of the
original model.
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e A simple Taylor expansion argument shows that the dependencies of specific braking and accel-
eration forces on the macroscopic density and relative speed used in [15] are to be expected even
for a class of more general models.

e We next focus on a deceleration (braking) secenario and use a traveling wave ansatz to derive a
differential equation with an appropriate nonlocality (the “jam” equation). The equation allows
all constants as trivial solutions, but the existence of nontrivial solutions (“braking” waves) is
an open (and challenging) question. We suspect that such waves exist and are actually the
asymptotic states reached in sufficientlty dense traffic after a traffic jam is caused by a “trigger.”
Our numerical experiments (see below) provide evidence for this.

Eliminating the nonlocality by an expansion as in [15] but retaining the reaction time 7, one finds
ODEs similar to those in [15], but the individual reaction time remains as an additional parameter.
For this reduced model it is easily seen that traveling waves exist, and their qualitative features
show a weak dependence on 7. We derive constraints on the wave speed V in terms of the other
parameters.

e We present numerical results on the full model including the non-local term, generalizing pre-
liminary work from [15] where we only presented numerical results on traveling wave solutions
for a model where the nonlocality was removed by expansion. In particular, here we correct a
conceptual mistake contained in [15]: The results presented in Figures 3 and 4 in that paper are
flawed in the sense that the depicted waves were obtained by solving the ODEs for traveling wave
solutions; the problem is that the given data are in general not consistent with traveling wave
solutions, and in order to obtain the proper solution, the full system must be solved. We regret
this error, and its correction is one of the jobs done here.

Section 3 contains some analysis with consequences for the modeling;:

e All our models satisfy maximum principles in the sense that if an initial speed profile takes values
in [Wmin, Wmaz], then so will the solution. This is easy to see and raises the question how traffic
jams start. The answer is that the start of a jam is not provided by the model: one needs a
“trigger”, an event which causes sudden braking of one or many drivers in response. Triggers
can be the spatial or temporal introduction of a speed limit; or a braking reaction of drivers to
a sudden density concentration (measured as a diminished distance to the lead car—in practice,
this could be caused by a single driver who brakes in order to increase his/her distance to the lead
car); or a density jump due to a lane ending or traffic accident. Everyone who has ever driven on
a highway has probably experienced one of these triggers.

o These issues are explored in a series of numerical experiments in Section 4. In particular, we esti-
mate wave speeds of moving jams (“braking waves”) in response to an initially present deceleration
profile. The response depends on the initial size of the (constant) car density: For low densities,
the deceleration profile moves forward in traffic direction and steepens. For high densities the
profile moves backwards and appears to be well approximated by a traveling wave, with growing
accuracy for higher densities. We perform numerical tests to this end and also use the scenario
to compare these numerical solutions of the problem with traveling wave solution of the reduced
("localized” by Taylor expansion) jam equation. This comparison shows that the Taylor expansion
introduces a significant error. Furthermore, we discuss triggers: In Section 4.2 we consider sudden
temporal changes in the local speed variable (modeling random braking scenarios), changes in the



initial density as model for lane reduction or accidents, and speed limits imposed on parts of the
road. In all these cases we observe density-dependent traffic jams in the form of backward-moving
traveling waves.

Our results offer the prospect of analytical and numerical explorations of optimal traffic control
in response to the characteristic parameters (reaction time, safety distance, characteristic braking and
acceleration times). For example, what speed limit will offer maximal flow and absence of stop-and-go
waves while providing safety? Numerical experiments to this end are projected for the future.

We conclude this introduction by a (very) brief review of other approaches to traffic modeling.
Indeed, our models belong to only one class of possible models and ignore aspects of traffic such as
variations in vehicle size and mass, driver behaviour, random fluctuations, etc. While it is possible to
include such effects, our first priority here is simplicity in order to identify basic structures and explain
arising phenomena.

Our model is a macroscopic model derived from a Fokker—Planck ansatz, see [20, 15, 16, 19]. Macro-
scopic models have been studied intensively in recent years and an incomplete list of references include
[1, 3,4, 8,9, 10, 11, 17, 23, 25, 27, 33, 12, 18]. Second order macroscopic models use equations similar
to fluid dynamics models to describe the evolution of traffic density and velocity profiles. In contrast,
microscopic models keep track of individual drivers and their interactions in order to explain traffic phe-
nomena. Some references on microscopic models are [6, 7, 13, 14, 22, 32, 28, 29]. Microscopic models
can take the form of systems of ordinary differential-delay equations, or of discretized versions such as
cellular automata. These models have been extended to include stoachstic effects, see e.g., [26], [30, 31].
Finally, there is a class of kinetic models of Enskog-type which relates to microscopic and macroscopic
models, see e.g. [21].

2 Modeling

2.1 From Kinetic Equations of Vlasov Type to Macroscopic Models

Throughout this paper z,v,t will denote position (on the road), speed € [0, 00), and time.

f = flz,v,t), p = p(z,t),u = u(x,t) denote the kinetic density, the macroscopic density and the
macroscopic (average) speed of cars on a highway (freeway) lane. As lane changing in high density
is difficult, it is rare (sometimes, of course, you have to change lanes) and hence disregarded. Our
analysis is therefore confined to one lane or to a lane-homogenized scenario. By definition, we have the
relationships

pz,t) = /f(m,v,t) dv, (pu)(z,t) = /’Uf(.’L',U,t) dv.

As the reaction of drivers is always driven by what they see ahead of themselves, we introduce the
shorthand
wX(z,v,t) = u(z + H+ Tv,t — 1),

for the nonlocal average velocity at the point z + H + Tv and time ¢t — 7. Here, H is considered
a minimal safety distance, 7 is the “individual” reaction time, and T is a characteristic reaction time
which multiplies the driver’s speed. We choose one constant value of T' for both braking and acceleration
scenarios. In practice, one could (and should) use two different values Tp < T4 for braking and
acceleration, and a trivial modification of our modeling will accommodate for this. Note how the
(independent) speed variable enters into the macroscopic variables through this definition.



Our Vlasov model for high density traffic with a braking/acceleration force B (and without diffusion)
is

O f(z,v,t) + v, f(z,v,t) + Oy (B (p(x, t),v —uX(z,v, t)) f(z, 'u,t)) =0 (1)

where we are making the implicit assumption that B depends only on the density (at (z,¢)) and at
the relative speed (with respect to uX) of the reference vehicle at (z,v). The detailed behaviour of the
model depends, of course, on the assumptions made for B. The characteristics of this model are the
microsopic rules for cars given by

#'(t) = v, v' = B(p,v — u’).

As in [15] we will consider the choice

—g1(p)(v —u¥X) if v—uX>0
—g2(p)(v —u¥X) if v—u¥ <0

B(p,v—ux):{ (2)
where g2(p) should be a decreasing function of p. Although more complicated choices are possible and
will be discussed later on, we proceed with the setting

g1(p) = c1p,  92(p) = c2(Pmaz — p)-

This B was used in [16] to study long—time behavior of solutions. For this particular choice the braking
force B is assumed proportional to the density as well as the speed difference to the lead car. The
acceleration is proportional to the speed difference and antiproportional to the car density. There is no
acceleration as the maximum density is reached, a reasonable assumption.

The above ansatz for the braking and acceleration forces follows naturally from a second-order Taylor
expansion, as we show below and was already discussed in [15].

To proceed to macroscopic models, let ¢ € C§°((—o0,00) x (0,00) x (0,00)) be a test function,
¢ = ¢(z,v,t). The function f(z,v,t) is called a weak solution of (1) if for all such ¢

17¢) = [ [ [ 018+ da0 + ulBlo. — w)f)do dv dt =0, 3)

Proposition 1. The distribution valued function p(z,t)0(v — u(x,t)) is a weak solution of (1) in the
sense of (3) if and only if almost everywhere

z=0 (4a)
p (ut +uug — B(pyu — u™)) =0 (4b)

where the function uX (x,t) is here defined by u™ (z,t) := u(zx + H + Tu(z,t),t — 7).

The proof of this Proposition is given in [15]. This is an elementary way of “deriving” a macroscopic
from a kinetic model.



2.2 On Braking and Acceleration forces

The B used in our Vlasov equation can be completely general. However, reasonable assumptions on the
dependencies of B lead naturally to forces such as used in (2). First, consider a braking scenario. If we
abbreviate w := v — u”~, this means w > 0. Then B = B(p,w), and it is natural to assume that

B(p,0) = 0 V p€I0,pmas] (5)
BO,w) = 0 V w<0 (6)

(if a reference driver moves with the same speed as the lead car, there is no need for braking-there may
be acceleration, but let us ignore that for now); if the density is zero, i.e., if there are no other cars in
front of you, there is again no need for braking (there may be acceleration). These assumptions readily
entail that

B(0,0) = 0,B(0,0) = 0,,B(0,0) = 0,

and
0w B(0,0) = 0y B(0,0) = 0.

Assuming that B can be expanded in a Taylor series, we find to second order
B(ﬂa w) = BPTU(07 O)pw

Setting ¢; = —By,(0,0) this is exactly the ansatz used in (2).

A similar discussion applies to the acceleration scenario; abbreviating (for now) the acceleration
force by A = A(p, w) where w < 0 we observe A(pmaz,w) =0 and A(p,0) = 0. The formal second order
expansion gives

A(pa ’LU) = CQ(pmam - p)’w

which was used in [15].

It must be stated at this point that these assumptions are simplistic, especially for the acceleration
case. There are driver behaviours which are ignored at this point and which we will discuss later in this
work, such as spontaneous acceleration in low density traffic, spontaneous braking in high densities, and
general “noisy” driving. The assumptions made above assume simply that the only relevant variables
are the density and the relative speed to the lead car as observed by the reference driver. Furthermore,
it is not realistic to set A(pmaz, w) = 0 for all w < 0 and A(p,0) = 0 for small p. The first assumption
ignores the fact that acceleration can (and will) occur even in high densities if the lead car begins to
move on; the second ignores that at low density one can (and will) accelerate even if the lead car (which
is far ahead) moves at one’s own speed or even more slowly. Modifications to these rules are easily
envisioned, introduced and implemented, and they give rise to acceleration “triggers“ as seen (later) in
our numerical examples.

2.3 “Jam” equations and braking waves.

For this subsection we focus on a braking regime where u, < 0 (a remarkable feature of traffic modeling
is that model switches depending on properties of the solutions themselves are realistic and required).
The model equations (4) read

pt + (pu)w =0
ug + ugu + crp(u —uX) =0 (8)



with uX (z,t) = u(z + H + Tu(z,t),t — 7). A traveling wave ansatz (as in [15]) p(z,t) = p(z +
Vi), wu(z,t) =u(z+ Vt) and the shorthand s := z + V't leads to the ODEs

o+ V) =0 o)
and
(V +w)u'(s) + c1p(s) (u(s) —u(s + (H — 7V) + Tu(s))) = 0. (10)

Each traveling wave solution of our (braking) model satisfies (9) and (10), and conversely, each
solution of these equations with u/(s) < 0 for all s is a traveling wave solution of the model.

Equation (9) immediately integrates to p(s)(u(s) + V) = ¢oV (the factor V on the right is kept for
convenience), and after insertion into (10) we obtain

(u+ V)2 (s) = —crcoV [u(s) — u(s + (H — 7V) + Tu(s))]. (11)

Assuming that in the traveling wave regime u = 0 if p = pyaz, We find ¢y = ppee- This is the value
of ¢p used in [15], and it appears reasonable. However, other values of ¢y support other traveling wave
solutions and should not be discarded from the outset.

We refer to this type of equation as a “jam” equation. Based on numerical experiments presented
later in this paper we believe that it describes how braking waves triggered in dense traffic will prop-
agate through traffic. Observations suggest that in dense traffic V' will be positive and of the order of
magnitude of 10-20 km/h, so that braking waves will propagate backwards through traffic with such
speeds.

A comment. If we set z(s) := u(s) + V and abbreviate cy := H — (T'+ 7)V then equation simplifies
to

41

ds(3z ) =cicoV [z(s + ey + Tz(s)) — z(s))] (12)

This looks simple and intriguing, but we know of no tools to solve it analytically (except, of course, for
nontrivial constant solutions). Recall that a necessary condition for the usability of these equations is
2'(s) < 0. The solvability and solution properties of (12) are open and an interesting prospect, especially
in terms of their dependence on the parameters.

It is completely natural to reduce the analytical complexity of (11) by removing the nonlocality via
a Taylor expansion. However, the dimension of the nonlocalities is significant. If we measure distance
in metres, time in seconds and if we take H = 8m, T = 2sec, then at a speed u = 15m/sec we find
H + Ty = 38m. That is, in a braking scenario there should be a distance of 38 metres from the front
of your car to the front of the lead car if traffic moves at 54 km/h. These 38 metres are not a small
quantity and do not a priori justify Taylor’s expansion in terms of H+7T u. In [15] we used the expansion
anyway in order to obtain a solvable problem. We repeat this and include the individual reaction time
for completeness.

After expanding u in (11) to second order (u(s + (H — 7V) + Tu(s)) = u(s) + v/(s)(H — 7V +
Tu(s)) + (1/2)(H — 7V + Tu(s))? +...)), substitution and truncation of the higher order terms, the
jam equation becomes

d*u 2(u + V)2 —c1eoV(H — 7V + Tu) du
ds? cicoV(H — 7V + Tu)? ds’

(13)



For 7 = 0 this is identical to the braking equation we studied in [15]. In fact, we have obtained the
same equation with a small change of parameter (H has changed to H —7V). As in [15] one can check
that braking waves ending at a small (positive) residual speed ug will exist if the wave speed V satifies
H
0<V < 29 < Hyr
14 C1CT
These braking waves are best depicted in phase space {(u,u')}. A numerical integration of (13) is
depicted in Figure 2.3 for a set of parameters as in table 1 and initial data of u(0) = 80% umax = 242
and v'(0) = —10% 87%.
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5 10 15 20 25 0 5 10 15 20 25
u(s) u(s)

Figure 1: Numerical integration of (13) depicted in the v — u'—phase space for different reaction times

T =1 sec (left) and 7 = 0 (right).

A similar derivation holds for the acceleration case, leading to a “rarefaction” equation. We omit
the details.

3 Maximum Principles, Model Refinements and Triggers

3.1 Maximum Principles

Let us assume that traffic flows according to the equations

pr+ (pu)e =0 (14)
ug + uug + c1p(u — u*) = 0 while w — u™ >0 (15)
ug + Uty + 2 (Pmaz — p)(u — u™) = 0 while v — v <0 (16)

and assume that we have a (smooth) solution p(z,t),u(z,t) such that at zg

u(zg,t) = sup u(z,s).
z,s<t
A driver at z at time ¢t will then be in a braking situation, and one easily sees that us(zg,t) < 0.
A driver at a location zg — ¢ at time ¢ may be in an acceleration situation, but the acceleration law
will not allow to accelerate past the maximal value of u. Similar considerations apply to minimal speed
values, and we observe that our models (in fact, every model whose acceleration and braking forces are
proportional to the relative speeds with respect to the lead car) will obey a maximum principle:



Proposition 2. Suppose that for all x and all s € [0, 7] we have
0<a<u(z,s) <b.
Then for any smooth solution of (16)
0<a<u(z,t)<b
for all x and all t > 0.

This principle is consistent with the trivial fact that every constant state (p,u) is a solution of our
model equations; and there will be no deceleration below the lowest speed driven anywhere on the road
at time zero, and no acceleration beyond the fastest such speed.

Reality shows us every day that this is not realistic. Traffic jams occur and disappear in steady
dense traffic for (sometimes) no apparent reason, such jams usually lead to standing traffic, etc. Our
models need refinement in order to account for such effects.

3.2 Refinements and Triggers.

It is not hard to understand which features our modeling process has ignored so far. They are features
of two different flavours.

e More careful modeling of the braking/ acceleration forces in regimes where the speed profile is
not monotone. This arises, for example, in a neighborhood of local speed maxima or minima, or
in regimes where the speed profile is rather oscillatory with short “wavelengths” (whether such
regimes arise in practice is a separate question). For example, assume that there is a o such that

0 <o < H+Tu(z,t) and u(z,t) > u(z + o,t),

but u(z,t) < u(z + H + Tu(z,t)). According to our models, the reference driver at z,t will act
as if he/she is in an acceleration scenario although there are slower vehicles immediately in front
of him/her. The problem is obvious: The nonlocality scale in this case exceeds the monotonicity
domain. Remedies for this are immediately clear once the problem is realized:

We redefine
pX = sup p(.’L‘ +o,t— T)’ (17)
o€(0,H+Tu(z,t))
uX = inf u(z +o,t— 1), (18)
g€(0,H+Tu(z,t))
X = u(z+H+Tu(z,t),t —7) (19)

(note that uX = u(x + H + Tu(z,t),t — 7) is what was previously called uX) and

—c1pX (u — uX) if u —u® > 0.

—co(Pmax — p~X)(u —u¥X) ifu—uX <O0. (20)

Blo.un) = {
The new braking law uses the maximal observed density and the minimal observed speed in the
relevant window; only if u —uX < 0 is the braking case rejected, and then we accelerate according
to the old rule.

There is certainly more flexibility to modify these rules. In fact, we discovered the necessity of
modification by numerical experiments, in which the original rules led to unrealistic density and
speed oscillations due to the scale problem mentioned above.



e These revisions are still consistent with the validity of a maximum principle as discussed earlier (in
fact, in monotone regimes the modifications amount to no model changes at all). This leaves the
task of introducing triggers; an open-ended task, because in reality there are undoubtedly many
different triggers. For the purpose of this paper we will only consider two triggers, one requiring a
structural model change, the other requiring temporally and spatially localized rule changes, for
example by a speed limit.

First, let us assume that drivers will be uncomfortable driving at high speed in dense traffic (this is
certainly realistic). Suppose that a driver will feel the need to reduce speed if the observed density
(p*) exceeds a certain multiple of the “comfort density” p. := 1/(H + Tu) which is relevant for
a braking event. In other words, we assume that there is a constant c3 such that a driver will
spontaneously brake if pX (H + Tu) > c3, and the braking force will not be dependent on relative
speeds, but be proportional to p and to u. This leads to

—c1pu u—u™ > 0,0 (H +Tu) > c3
X X X
x ., _.xy_ ) —aplu—u?) u—u >0,p" (H+Tu) <cs
B(p,p",u—u”) = —co(pmax — p)(u — 8%) u—uX <0, p X (H + Tu) < c (21)
0 u—uX < 0,0 (H +Tu) > c3

Note that the second and third lines reproduce the previous model in case of moderate density.
The final line states that no acceleration occurs in high densities, even though the relative speeds
are consistent with acceleration.

Other modifications are possible, e.g., we could make the braking force proportional to pX instead
of p. It is also possible to think of other weights for the strength of the acting forces, e.g.,
replacing —cipu by —ci1p’u” for some exponents v,k > 1. However, since all these quantities
might be difficult to observe from data we kept the model simple and only use a priori given
parameters as, for example, the safety distance H and the reaction time.

Remark 1. The braking force —cip(u—u™) which applies in (21) has interesting effects in the numerical
simulations. For example, consider a spontaneous braking scenario: free flow traffic at constant speed
and density, and att = 0 a single car at some position xy brakes. At time T the cars at positions [Zg, zo)
with %o := o — (H+Twu) observe the change in velocity and begin to brake. Since uX = inf, u(z+o,t—7)
the braking force will be the same for all cars in [Zg, zg]. This forces a discontinuity in u at Ty which in
turn leads to a concentration in the density. Furthermore, we observe secondary effects: at time 27, cars
in [Zg — (H + Tu), Zo| start to brake and so on. These effects are visible in the numerical simulations

depicted in Figure 9 and Figure 11.

4 Numerical Experiments

We present numerical results for (4) in conservative form

pt + (pu)z =0 (22a)
(pu)i + (pu®)s = pB(p,u — uX) (22b)

together with braking and acceleration terms as discussed in the previous section. More precisely, we
present results using either

— _ X _ X
B(p,u,uX):{ c1p(u —u™) u—u" > 0.

_CZ(f)max - p)(u - IHX) u—uX < 0. (23)



or

—c1pu u—uX >0,pX(H +Tu) > c3
X X b'e
X —c1p(u — u™) u—u” >0,p" (H+Tu) <c3
— = 24
Blpyu—u”) —co(pmax — p)(u —u~) u—uX <0,pX(H +Tu) < c3 (24)
0 u—uX <0,p%X(H+Tu) > c3

The system of balance laws (22) is numerically solved by a first—order finite volume method on a uniform
grid with N, grid points in space. We apply a first—order time—splitting approach to treat the source
term. The transport part consists of the equations of pressureless gas dynamics. A Godunov scheme in
the conservative variables (p, pu) for these equations can be found in [24] and has been discussed therein.
We use precisely this scheme for discretization of the transport. Time and spatial discretization are
choosen such that the CFL condition is satisfied. Alternative discretizations can be found in [2] or the
references therein. Higher—order spatial and temporal discretizations could also be used in order to solve
the equations numerically. However, since the problem is one-dimensional in space the computational
time even on very fine grids is within minutes. The source term pB(p,u — u’X) is evaluated at the
center of each cell with piecewise constant reconstruction of p and u. To compute u* we interpolate u
using the nearest neighbor. Since the source term is non—stiff a first—order explicit FEuler scheme for the
integration of the source term with a temporal discretization given by the transport part is sufficient. If
not stated otherwise we set up a “circular” road (using periodic boundary conditions) and use parameter
values as given in table 1. Initial data is prescribed as discussed below. All computations have been
performed on a 2.4 GHz Intel Core 2 Duo.

Length of the road 2000

Savety distance H 10

Time T 2
Reaction time 7 1
Maximal density pmax 2/H

C1 1 -6/ Pmax
() 1 / Pmax
C3 1

Table 1: Parameters used in the traffic low model. All distances are in meters and all times in seconds.

4.1 Experiments for Models (4), (23) and (4), (24)
4.1.1 Test of the Spatial Discretization- “Calibration”

For B = 0 the traffic flow model is exactly the system of pressureless gas dynamics, and we reproduced
numerical experiments done elsewhere to test our methods. In order to verify our numerical scheme
we used benchmark calculations for Example 2 in [2]. In this test problem two compactly supported
clouds collide and produce a d—wave in the density. We use N, = 1600 points in space and initial data
prescribed at t = —1 as in [2]

(2,1) -2<z<-1
(p(z,—1),u(z,—-1)) =< (1,-1) 1<zx<5
(0,0) else

Since the solution contains a d—wave in the density we adjust the plotting area for the density (as in
[24]) as follows: we only show densities below 3.5. As expected, the two clouds collide at time ¢t = 0

10



and the left cloud gives rise to a concentration in density at at time ¢ = 1.21. More details as well as
the analytial solution to this problem can be found in Section 4 of [24]. We depict the solution at time
t = 0.5 and t = 1.5 in Figure 2 and observe a good agreement of the expected wave speeds.

35 T T T T T T T T 35
3r 3 4
251 25 i
2+ oL i
15F 4 15t i
1+ 1 i
05 4 05¢ 4
0, L L L L L L L L 0

L L L L L L
-3 -2 -1 0 1 2 3 4 5 6 -3 -2 -1 0 1 2 3 4 5 6

Figure 2: Pressureless gas dynamics with two colliding clouds at time ¢ = 0.5 and ¢ = 1.5. Density
profiles are shown. The plot is restricted to the values where p < 3.5

4.1.2 On Wave Formation, Propagation and Speed

For the model with braking term (23) we ran simulations using different (constant) initial densities
ranging from 6.6% to 33.3% of the maximal density. The initial velocity was chosen to decay smoothly
(using a hyperbolic tangent profile) from 24m/s to 5m/s over a distance of 400 m. All simulations
produced (in u) a wave similar in structure to the initial profile, but depending on the initial chosen
density it moved with either negative or positive velocity, see figure 3. For higher densities the wave
moves backwards, whereas in regions of low density the wave moves forward and becomes steeper.
Numerical estimates of the wavespeeds are presented in table 2.

0.8 T T T 24
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01f
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200 400 600 800 1000 1200 1400 1600 200 400 600 800 1000 1200 1400 1600

Figure 3: Traveling waves obtained by simulating (23) for an initial velocity profile as depicted in bold
blue in the picture to the right. The density is initially constant. Same colours are corresponding
solutions. The solutions are depicted at time T = 20sec.
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p |4

6.6e-2 -6.3
1.3e-1 -1.0
2.0e-1 2.55
2.6e-1 5.6
3.3e-1  8.30

Table 2: Approximate wave speeds V' in m/s of the braking waves in u (simulated with the braking
force (23)) from the corresponding solutions as depicted in figure 3.

We investigated whether the emerging profiles match traveling waves in the relevant domains. These
domains depend on the initially chosen densities and the corresponding wave speed V. For the lowest
initial density (pp = 0.066, measured as a fraction of the maximal density) no traveling wave profile can
be discerned after T' = 20 seconds; in fact, the steepening of the profile suggests approximation to a
shock wave, although we were not able to prove this analytically. For the initial density py = 0.26 and
the corresponding estimated speed V = 5.65 we entered the data between road coordinates 600 and 900
into the left hand side of the continuity equation in traveling wave form (9) and computed w.
The result is shown in Figure 4 and shows that the equation is satisfied up to errors of order 3.5 x 1073.

This calculation required no choice of c¢y.

x10°

05 d(thowrvyyds | ]

L L L L L
600 650 700 750 800 850 900

Figure 4: The function s — |d(p(u + V'))/ds| with p(z,T) and u(z,T) as the solutions to (23) with
initial density pg = 0.26 and wug as in Figure 3 at time T = 20sec.

We then estimated a suitable ¢y = 1.35py,4; by optimally matching the data curve for p and the
traveling wave approximation 53_“/, (where u is taken from the data set), see Figure 5.

We then entered the data for p and u into the traveling wave form of (10) and (11) with the previously
chosen cy. The results are shown in Figure 6 where ‘é—g is obtained numerically using centered finite
differences which explains the small oscillations.

The results of Figure 6 suggest that the approximation by a traveling wave in the domain [600,900]
is excellent.

We then repeated this test for initial p = .2 and the corresponding V' = 2.55 in the same domain.
Here the test produces a significantly larger error, which suggests that either no traveling wave forms
at all, or it takes a much longer time to get there. Our numerical tests to date are insufficient (because

of the periodic boundary conditions) to decide this. We omit the pictures.
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thomax * V// (u +V)
C* thomax * V/ (u +V)

02—

Figure 5: Density p(z,T) as solution to (23) at time 7" = 20sec in comparison with the functions
z — % and £ — % for C = 1.35 and u(z,T') being the solution to (23) at time 7" = 20sec.
A restriction of the area 600 < z < 900 is shown.

u

(u+V)? dulds
—c1*C * thomax * V * (u(s)-u(s+..)

(u+V) dulds
~c1*rtho(s) * (u(s)-u(s+.) —

900

_ L L L L L
600 650 700 750 800 850 900 x

Figure 6: Left: Graph of the function z — (u(z,t) + V)%(w, t) and x = —cip(z,t)(u(z,t) —u(z+ H —
7V + Tu(z,t),t)) at tme ¢ = 20sec as approximation of equation (10). Right: Graph of the function
z — (u(z,t) —I—V)Zg—g(w,t) and £ = —c1Cpmaz(u(z,t) —u(z+ H — 7V +Tu(z,t),t)) at tme t = 20sec as
approximation of equation (11) and with ¢y = Cppqez- In both cases the partial derivative is computed
numerically using finite differences.
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Finally, we used the numerical data set (for py = .26,V = 5.65) to test the solutions provided by
the localized jam equation (13). Figure 7 addresses the various ways of computing p.

We show the data for p obtained from the full simulation, the rho obtained by the match 533‘/,
(where u is taken from the simulation), and the match ucf’i_“/, with u taken as a solution of the localized
jam equation (13). This solution is obtained by numerical integration using a standard fourth order
Runge-Kutta method. As initial values we used u(750) = 13,4'(750) = —0.08 as obtained from the
data set. The point £ = 750 corresponds to the point of maximal absolute braking force in the full
simulation. Figure 7 shows also the corresponding comparisons for u.

Three things are transparent: First, the original p cannot correspond to a traveling wave for z > 900,
as p reaches a maximum and starts to decrease. This is a trivial consequence of the fact that our
initial values for the full simulation are not compatible with a traveling wave solution on the whole
domain. Second, the data match to p is excellent for = € [600, 850], showing the traveling wave profile
in this domain. Third, the traveling wave profile provided by the localized jam equation is a poor
approximation to the true profile. This latter point is not surprising as we already observed that the
Taylor approximation is rough because of the significant size of the nonlocalities.

Localized Jam: u
07 22 u (PDE)

Localized Jam: C * thomax * V/ / ( u(ODE) + V) —
i tho (PDE) 6 T~—
—— C *thomax * V / (u(PDE) + V) —

L L L L L L ) 4 L L L L L L )
600 650 700 750 800 850 900 950 600 650 700 750 800 850 900 950
x X

Figure 7: Comparison of different computations of p (left) and u (right). We present computations based
on the full simulation of the partial differential equation (PDE) (23) and solutions to the localized jam
equation (ODE) (13). The constant Cpmaz = co is the best match of u and p to the jam equation
(10). The solutions to (13) are computed with initial data prescribed at = 750m. This is the point of
maximal braking force in the solution to (23).

We repeated the same experiments for smaller p and found larger errors (not surprising, as the
traveling wave approximation is poorer). These pictures are omitted.

4.1.3 Comparison of Model Predictions

We next compared the effect of the modification of the braking term in (24) with simulations of the
original model (23). We prescribe for the current simulations a constant velocity profile and we perturbe
the density profile as depicted in Figure 8. The perturbation is chosen such that the modified braking
term (24) is initially active only close to z = 1000. It remains active close to the peak of the density
and is inactive elsewhere.

We chose NV, = 4000 grid points, c3 = 2.5 and the remaining parameters as in Table 1. Only small
changes in the qualitative shape of p due to the model modifications were observed. But one easily
sees that the shape of the emerging velocity profile is completely different. Whereas in the original
model the velocity stays constant and the density is simply advected with this velocity, the modified
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model exhibits braking scenarios and a decrease in the velocity around the state of high density. The
perturbation has here acted as a trigger for a traveling wave solution.

0.12 T T T T T T T T T 182
=0 t=0

— — Model 1 — — Model 1
Model 2 Model 2

L L L L L L L L L 16.8 L L L L L L L L L
0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 200 400 600 800 1000 1200 1400 1600 1800 2000

Figure 8: Density (in percentage of pmax) and velocity profiles (in m/s) at T' = 40sec for different initial
values of the densities. Model 1 refers to the original model (23) and model 2 to its modification (24).

4.1.4 Explaining Density Oscillations (c.f. Remark 1)

Consider the following unrealistic scenario. Set (the safety distance) H = 100 and use constant initial
density at 40% of pmax and a velocity of 21m/s. Assume that for 5 seconds all cars in the interval
I = [900,1100] brake according to equation (25) with u®™ = 15m/s. For t > 5 sec the rule (24) is
applied with c¢3 = 5. We present snapshots of the solution for ¢ € [0, 10] seconds in Figure 9. Clearly, in
the first seconds all cars in the interval I brake, and we observe a decrease in their speeds (green line).
In the time interval after the first drivers react (i.e., after reaction time 7 = 1 sec) we observe that
not only the cars in I brake, but also cars in the range of £ > 800m, since they observe the previously
mentioned cars and adjust their velocity accordingly. As the braking force for those cars is proportional
to u —uX and u”X is the minimal speed of the lead cars, all cars in the range of 800 — 900 brake with the
same force. This yields the plateau shaped solution at time ¢ = 3 sec (red). Wherever u exhibits “steps”
we observe a peak in the density due to the continuity equation: py = —pyu — uyp. These pinches in
the density advect and therefore remain throughout the simulation. The pattern repeats: The velocity
profile at ¢ = 5 sec exhibits three areas of steps and three corresponding peaks in the density. This
continues for later times ¢ and yields the oscillations in the density. For smaller H the wavelength of
the oscillations will be shorter.

4.2 Numerical Results on Triggers

We present numerical results for different triggers. In all simulation results we observe a backwards
moving wave in the velocity and density profile. This travelling wave is considered as traffic jam. In
the density we furthermore observe oscillations of high frequency with small amplitude. Their presence
has been discussed in Remark 1 and Section 4.1.4.

4.2.1 Perturbation of the Initial Density as Trigger of Traffic Jams

We consider a circular road and the braking term (24). The density is also assumed to be constant with
a perturbation on a window of length 200m centered around z = 1000m. Contrary to the simulations
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Figure 9: Density (in percentage of pmax) and velocity profiles (in m/s) at 7' = 40 sec

in Section 4.1.2 we prescribe an initially constant velocity of ug = 18m/s for the full spatial interval.
The situation modelled by this scenario is the occurrence of a sudden traffic accident leading to a higher
density at some point of the road. At time ¢ = 0 this accident is not yet recognzied by the drivers
following.

The modified braking term (24) is equivalent to the original braking term (23) whenever pX (H +
Tu) < ¢3 = 2.5. The regions wherein the modified braking term is active vary in time and space. For
the simulation with an initial density of 20% of pmay the quantity p* (H + Tu) stays between 0.86 and
4.44 depending on spatial and temporal position.

The results are depicted in Figure 10. We observe the emergence and evolution of waves in the
velocity profile depending on the initial density on the road and its perturbation. The initial density
was varied from 5% of ppax to 22.5% of pmax. The peak value of the perturbation was always 5.5 times
the initial density, which guarantees that in the area of the higher density the modified braking force
—c1pu acts. For a low initial density there is, over time, a decay in the density to a regime where the
original braking law (23) applies. Depending on the initial level of p we observe either forward moving
waves (becoming steeper as time grows) in the velocity or backwards moving waves of travelling wave
shape as in figure 10. The velocity decays at most by 3.5 m/s corresponding to 12.6 km/h.

4.2.2 A Speed Limit as Trigger for Traffic Jams

We model a velocity constraint area by modifying the braking and acceleration scenario inside an interval
I where the constraint is active. Outside of I we use (23), so that

—c1p(u — ul™) z el
=< —cip(u —uX) u—uX >0 z¢l (25)
—c2(pmax — p)(u —uX) u—uX <0 z ¢l

B(”’E7 p’ u7 uX)

We start with initial constant densities in the range of 10% — 40% of the maximal density and constant
velocity of 24m/s. A velocity constraint u"™ = 15m/s is imposed on a strip I of length 200m. As
always, we study the arising wave patterns. A graph the solution is given in Figure 11.

4.2.3 Sudden Changes in the Velocity as Trigger for Traffic Jams

Here we use the braking and acceleration term (23) and consider a circular road with the parameters of

table 1. For a duration of 5sec drivers in the interval I = 990 — 1010m brake towards a limiting velocity
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Figure 10: Bottom part of the picture: Density (in percentage of pmax) and velocity profiles (in m/s)
at T = 40sec for different initial values of the densities. Initial data is depicted in the top part.
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Figure 11: Density (in percentage of pmax) and velocity profiles (in m/s) at T = 30sec for different
initial values of the densities. The bold part indicates the active velocity constraint which is set to
Uim = 15m/s. on a strip of 200m centered at z = 1000m.
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of u!™ = 15m/s according to (25). Then, for ¢ > 5 sec, the original rule (23) applies to all drivers. The
solution is depcited in Figure 12.

L L L L L L L L L L L L L L L L L L
200 400 600 800 1000 1200 1400 1600 1800 2000 o 200 400 600 800 1000 1200 1400 1600 1800 2000

Figure 12: Density (in percentage of ppax) and velocity profiles (in m/s) at T = 40sec
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