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Abstract5

We consider the problem of marketing a new product in a population6

modelled as a random graph, in which each individual (node) has a7

random number of connections to other individuals. Marketing can8

occur via word of mouth along edges, or via advertising. Our main9

result is an adaptation of the Miller-Volz model, describing the spread10

of an infectious disease, to this setting, leading to a generalized Bass11

marketing model. The Miller-Volz model can be directly applied to12

word-of-mouth marketing. The main challenge lies in revising the13

Miller-Volz model to incorporate advertisement, which we solve by14

introducing a marketing node that is connected to every individual15

in the population. We tested this model for Poisson and scale free16

random networks, and found excellent agreement with microscopic17

simulations. In the homogeneous limit where the number of individ-18

uals goes to ∞ and the network is completely connected our model19

becomes the classical Bass model. We further present the general-20

ization of this model to two competing products. For a completely21

connected network this model is again consistent with the known con-22

tinuum limit. Numerical simulations show excellent agreement with23
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microscopic simulations obtained via an adaptation of the Gillespie24

algorithm. Our model shows that, if the two products have the same25

word-of-mouth marketing rate on the network, then the ratio of their26

market shares is exactly the ratio of their advertisement rates.27

1 Introduction28

We are concerned with modelling the penetration of a market by one or more29

new products like a new type of cell phone, mattress, or item of clothing.30

The classical model describing this process is the well-known Bass model [2],31

first introduced in 1969. It assumes that a potential buyer population can32

be divided into a fraction which has already bought the product, F (t), and33

1 − F (t), the fraction that has not bought but consists of potential buyers34

(we will call this group “susceptibles”, for reasons which will become clear).35

For this situation, Bass suggested that36

dF

dt
= p(1− F ) + qF (1− F ) , (1)37

where p represents the rate of spontaneous conversion into buyers due to38

advertising, and q represents the adoption rate of the product due to the39

word-of-mouth recruitment of a potential buyer. Interestingly, the simple40

model produces a good fit to empirical data [3].41

The Bass model assumes a homogeneously mixed population (i.e., each42

pair of individuals has the same chance of contact), an assumption which is43

clearly too simplistic. More realistic models of population contacts are so-44

cial networks, where nodes represent individuals and edges connecting nodes45

represent contacts. It is thus of interest to understand how the underlying46

assumptions of the Bass model will work on social networks. Unfortunately,47

there currently are no models that can precisely describe dynamics of mar-48

ket penetration on general social networks. The purpose of our paper is to49

partially fill this gap.50

The classical Bass model has been extended to special deterministic graphs51

[see, e.g. 5]. However, real populations are usually too large and too com-52

plex to be studied by this approach. Recent related research is concerned53

with stochastic simulations of the (accelerated) word-of-mouth propagation54

of information on the internet [13, 20]. Similar rumor diffusion processes55

on networks have been extensively studied both using stochastic simulations56

[see, e.g., 21] and theoretically [see, e.g. 11, 22].57
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A key observation is that product and rumor diffusion is similar to the58

spread of a disease in a population, where potential buyers are analogous59

to susceptible individuals, and buyers are analogous to infected individuals60

(this is the reason for our terminology). Indeed, most mathematical models61

in rumor diffusion on networks are based on a classic dynamic Susceptible-62

Infectious-Susceptible (SIS) epidemic model on random networks [14]. An-63

other classic approach is the bond percolation method [12], which predicts64

the threshold and final epidemic size but cannot describe the dynamics of the65

diffusion. Lindquist et al. [9] showed that the Pastor-Satorras and Vespignani66

model can drastically overestimate the disease spread, and its Susceptible-67

Infectious-Recovered (SIR, i.e., individuals recover with lifetime immunity)68

model counterpart yields a larger diffusion threshold than the threshold pre-69

dicted by the bond percolation method. Recently, disease models on random70

contact networks that agree very well with stochastic simulations have been71

developed [see, e.g. 9, 10, 18]. All three models yield a diffusion threshold72

identical to that of the bond percolation method. In this paper, we base our73

market diffusion model on the ideas of Miller [10] and Volz [18] because of74

their simplicity.75

While the word-of-mouth method of promoting a product is akin to the76

spread of a virus via one-on-one infection, advertising provides the external77

influence, which can be thought of as providing “spontaneous” infection at78

some rate. This adds an extra twist to the modelling problem, analogous to79

the situation where a pathogen is present in the environment, such as the80

cholera bacterium in a water source. In this paper we model this external81

influence using a multigroup extension of the Miller-Volz model [10], due to82

Koch et al. [8], to the marketing of one or more products on random social83

networks.84

A random network is a network (or graph) generated by some random85

process. This is an important class of graphs because it is usually impossible86

to determine the social network of a large population, and the degree distri-87

bution (the distribution of the number of contacts, called neighbours, of a88

node) in such networks is usually reconstructed from statistical data. Given89

a degree distribution, a random graph can then be constructed by a configu-90

ration model [see, e.g. 12]: each node is randomly assigned a degree from the91

given degree distribution, determining the number of “half edges” coming92

out of the node; then two “half edges” are uniformly chosen and connected93

to form an edge; this edge formation process is repeated until no edges can be94

formed. In practice, connecting “half edges” from the same node, or nodes95
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that are already neighbours, is disallowed in order to avoid self-loops and96

multiple edges. The process works quite well for large node numbers (say,97

N = 10, 000) and reasonable edge distributions, like a Poisson distribution98

with a moderate and realistic average edge number, say, 25. The microscopic99

simulations at the end of our paper were done for networks generated in this100

way.101

Our paper is structured as follows. We first revisit the Miller-Volz model102

[10], a concise and very effective model to simulate the spread of an infec-103

tious disease on a random graph. We reproduce it here for completeness and104

because of its importance for the sequel. Section 3 contains the derivation105

of the generalized Bass model. By suitable modification of the ideas under-106

lying the Miller-Volz model we arrive at a new marketing model on social107

networks. We show that this model precisely captures the ensemble aver-108

age of the underlying stochastic marketing process, and is equivalent to the109

Bass model in the limit of homogeneous mixing. In Section 4 we extend this110

network model to the case of two competing products. In Section 5 we com-111

pare microscopic simulations with simulations based on the new models and112

find excellent agreement. Under some simplifying assumptions on the model113

parameters we make predictions of the final market shares of the competing114

companies in Section 6. The homogeneous limit is discussed in an appendix.115

2 A brief review of the Miller-Volz model116

The Miller-Volz model [10] is a Susceptible-Infectious-Removed (SIR) epi-117

demic model on random contact networks. It describes the spread of a118

non-fatal disease which ends in life-time acquired immunity. Susceptible119

individuals may become infectious upon contact with infectious individu-120

als, and infectious individuals recover after an infectious period and will121

never be infected again. The random contact network is characterized by its122

degree distribution {Pk} (the probability that a random node on the net-123

work has degree k), and alternatively represented via its generating function124

Ψ(x) =
∑

k Pkx
k, where x is a dummy variable. The power of this descrip-125

tion will become apparent. In computer simulations a random network is126

normally constructed as described in the introduction. Edges (contacts) are127

considered as directed, and can be characterized by the type of nodes they128

connect; for example, there are S ← I edges, I ← S edges, etc.129

We begin by setting the terminology. The fundamental idea behind the130
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Figure 1: An illustration of the source node P , the target node Q, and the
directed edges in the Miller-Volz model. The directions of the edges represent
the directions of transmission. An edge in a contact network corresponds to
two directed edges, the directed edge in the opposite direction is not shown
here.

Miller-Volz model is to study the dynamics of the edges rather than the131

dynamics of the nodes. To this end, we consider a directed edge with source132

node P and target node Q, as depicted in Figure 1. If the source P is133

infectious, transmission occurs along this edge with rate β (i.e., β is a rate134

per edge, and independent of the number of target nodes). Transmission135

causes new infection only if the target node is susceptible.136

Let θ(t) be the probability that a random edge has not transmitted “an137

infection” by time t. This θ is our first dependent variable.138

A target node remains susceptible while none of its edges (contacts) has139

transmitted. If the node has degree k, then, assuming independence, the140

probability that it is susceptible is θk. In general, a random node is suscep-141

tible with probability142

S(t) =
∞∑
k=0

Pkθ
k =: Ψ(θ) ,143

where Ψ(x) is the previously defined probability generating function of the144

degree distribution {Pk}. The probability S(t) is also the fraction of suscep-145

tible nodes in the population. The fraction of infectious nodes I(t) increases146

because susceptible nodes get infected, and decreases because infected nodes147

recover (with a constant rate γ per node). Thus,148

dI

dt
= −dS

dt
− γI = −Ψ′(θ)

dθ

dt
− γI .149

To understand how fast an average node becomes infectious, the Miller-Volz150

model focusses on the dynamics of θ. An edge in class θ loses its status151
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only when it transmits, i.e., when a transmission occurs along it. Let φ(t)152

be the probability that a randomly chosen edge is of class θ (i.e., has not153

transmitted) and has an infected source; this is exactly the fraction of edges154

that can attempt transmission but have not yet transmitted. Therefore,155

dθ

dt
= −βφ , (2)156

where β is the disease transmission rate along an edge. Note that by these157

definitions pI := φ/θ is the conditional probability that the source node of an158

edge belonging to the θ class is infected. The probability pI is closely related159

to I and becomes I in a suitable limit (mentioned below).160

An edge of type φ can change status only because of a transmission along161

it, or because of recovery of the infected source. An edge can enter class φ162

only if its source (which has degree k with probability kPk/
∑∞

i=0 iPi) becomes163

infected. This once-susceptible source, given that it has degree k, can be164

infected only if at least one of its other k − 1 edges is of class φ. Thus,165

dφ

dt
= −(β+γ)φ+β

∞∑
k=0

(k−1)φθk−2
kPk∑∞
i=0 iPi

= −(β+γ)φ+βφ
Ψ′′(θ)

Ψ′(1)
. (3)166

These two differential equations for θ and φ form the Miller-Volz model.167

The fractions S and I can be recovered from θ and φ as shown above. The168

gain term in 3 can also be written as −h′(t), where169

h(t) =
∞∑
j=1

θj−1
jPj∑
iPi

=
Ψ′(θ)

Ψ′(1)
(4)170

is the probability that a θ-edge has a susceptible source.171

We have committed a modest abuse of notation in the sense that S, I, θ172

and φ will denote fractions (or, more precisely, probabilities) as defined above,173

but we also talk of S-nodes, edges of type θ, etc. This practice will continue174

in the rest of our paper.175

As already noted by Miller [10] this model is a genuine extension of the176

classical SIR model. This means that in a homogeneously mixed population,177

seen as a contact network on a complete graph, the Miller-Volz model should178

become the classic SIR model179

dS

dt
= −qSI ,180

dI

dt
= qSI − γI ,181

182
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where q = (N − 1)β is the per capita transmission rate in a population of N183

individuals.184

Treating the infectious individuals I as buyers, this SIR model is analo-185

gous to the Bass model with only word-of-mouth marketing if γ = 0, because186

a buyer remains a product holder and continues to pass information forever;187

this is equivalent to no recovery after infection in the disease model (i.e.,188

γ = 0 and S = 1 − I). Of course, “recovery” (e.g., an individual aban-189

dons a product and is open to buy others) is an option, and can easily be190

incorporated into our modeling. Here we will only consider the case γ = 0.191

3 Marketing one or more products in a pop-192

ulation modelled as a random graph193

As in the classical Bass model the marketing process will include two pro-194

cesses: a word-of-mouth transmission on a random social network (called195

W in the sequel), and transmission by advertising which is assumed to reach196

every individual in the social network to the same extent. As above, the word-197

of-mouth random network W can be realized by the configuration model.198

To include advertisement, we assume that there is one more node (the199

producer) outside W , denoted by A, which has one connection to each node200

in W . These connections are used for advertising purposes and can therefore201

transmit.202

3.1 The generalized Bass model with no marketing203

First, we ignore the advertising node A, and only consider the word-of-mouth204

network W . Let θW (t) and φW (t) be the θ(t) and φ(t) of the Miller-Volz205

model restricted to W , i.e., θW (t) is the probability that a random edge in206

W has not transmitted “an infection” by time t, and φW (t) is the probability207

that a randomly chosen θW edge has a source in W that is in the buyer class.208

As above we commit a small abuse of notation and use θW and φW to denote209

both the fraction and the class of edges which have not transmitted. The210

only difference between the marketing process and an SIR infectious disease211

model is that a buyer (infected node) remains a buyer (will never recover).212

Thus, the word-of-mouth dynamics is the same as in the Miller-Volz model213
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with the recovery rate γ = 0, i.e.,214

dθW
dt

= −βφW , (5a)215

dφW
dt

= −βφW + βφW
Ψ′′(θW )

Ψ′(1)
, (5b)216

S = Ψ(θW ) , (5c)217

dI

dt
= βφWΨ′(θW ) . (5d)218

219

A random network may have disconnected components. For example, two220

degree one nodes may be connected and form an isolated pair. This is more221

obvious on a scale free network, which has many degree-one nodes. Thus,222

word of mouth may not be able to reach everyone on the social network.223

The expected final fraction of buyers can be computed as in Miller [10].224

Specifically, as θW (t) is a positive and decreasing function, θW (∞) exists.225

Thus, the fraction of susceptible nodes that never become buyers as time226

t → ∞ is S(∞) = Ψ(θW (∞)). To compute θW (∞), we first simplify (5a)227

and (5b). Dividing φ′W by θ′W yields228

dφW
dθW

= 1− Ψ′′(θW )

Ψ′(1)
.229

Integrating on both sides, with φW (θW (0)) ≈ φW (1) ≈ 0, leads to230

φW = θW −
Ψ′(θW )

Ψ′(1)
.231

Substituting into (5a) results in232

θ′W = −βθW + β
Ψ′(θW )

Ψ′(1)
.233

Thus, θW (∞) is the interior root (i.e., strictly between 0 and 1) of234

θW =
Ψ′(θW )

Ψ′(1)
. (6)235
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3.2 Including outside marketing236

Now we incorporate the marketing node A in the model. We denote by θA(t)237

the fraction of all edges with source A which have not transmitted by time t.238

A node in the word-of-mouth network W remains susceptible if and only if239

information has been transmitted neither by word of mouth nor by A-edges,240

so Equation (5c) must now be modified to become241

S(t) = Ψ(θW )θA . (7)242

The edges in the class θA only leave the class because of transmission. Thus,243

dθA
dt

= −αθA . (8)244

Further, in comparison to (4), the probability that the source node of a θW245

edge is susceptible should be modeled as246

h(t) =
Ψ′(θW )

Ψ′(1)
θA .247

The reduction of this probability by the infection of a susceptible source248

causes a θW edge to enter φW . Thus,249

dφW
dt

= −βφW − h′(t) = −βφW + βφW
Ψ′′(θW )

Ψ′(1)
θA + αθA

Ψ′(θW )

Ψ′(1)
. (9)250

The A-edges have no direct influence on the θW edges, and hence Equation251

(5a) remains the same.252

To obtain initial conditions, we assume that, initially, every node is sus-253

ceptible, and no edge has transmitted. In summary, the network marketing254

model is:255

S(t) = Ψ(θW )θA , (10a)256

dθA
dt

= −αθA , (10b)257

dθW
dt

= −βφW , (10c)258

dφW
dt

= −βφW + βφW
Ψ′′(θW )

Ψ′(1)
θA + αθA

Ψ′(θW )

Ψ′(1)
, (10d)259

260

with initial conditions S(0) = 1, θW (0) = 1, φW (0) = 0, θA(0) = 1.261
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4 Two competing products262

In addition to the external node A (e.g., Apple) there is now a second external263

node B (e.g., Microsoft), also connected by an edge to each node in W ,264

which competes with A to place their product. The susceptibles (initially all265

nodes in W ) can therefore turn into two different kinds of buyers, IA and266

IB. The probability θW is defined as before, but now there are fractions267

φA and φB of edges in W which have not transmitted but originate in an268

IA or IB, respectively. There are also two possibly different word-of-mouth269

transmission rates βA and βB. By θA and θB we denote the fractions of edges270

from A into W (and B into W ) which have not transmitted.271

As before, we assume that, initially, every node is susceptible, and no272

edge has transmitted. This leads to the following equations:273

S(t) = Ψ(θW )θAθB , (11a)274

θ′A = −αAθA , (11b)275

θ′B = −αBθB , (11c)276

θ′W = −βAφA − βBφB , (11d)277

φ′A = −βAφA +
Ψ′′(θW )

Ψ′(1)
βAφAθAθB + αA

Ψ′(θW )

Ψ′(1)
θAθB , (11e)278

φ′B = −βBφB +
Ψ′′(θW )

Ψ′(1)
βBφBθAθB + αB

Ψ′(θW )

Ψ′(1)
θAθB , (11f)279

with the same initial conditions as in (10), except φA(0) = φB(0) = 0,280

θA(0) = θB(0) = 1.281

The gain terms in the third and fourth equations add up to −h′, where282

h(t) now is given by283

h(t) =
Ψ′(θW )

Ψ′(1)
θAθB.284

This h is the probability of reaching a susceptible node if one follows a W -285

edge from a susceptible inside W . The rate of change of h tells us how fast286

this susceptible turns into an infected, and we have to distinguish whether287

it turns into an IA or an IB node. The four terms in h′ are split in just the288

right way to reflect this.289

Equations (11) also enable us to compute the fractions IA, IB of users290
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who have bought products A or B, respectively. Specifically, compute291

S ′ =Ψ′(θW )θ′W θAθB + Ψ(θW )θ′AθB + Ψ(θW )θAθ
′
B292

=− βAΨ′(θW )φAθAθB − αAΨ(θW )θAθB293

− βBΨ′(θW )φBθAθB − αBΨ(θW )θAθB .294
295

The first two terms on the right clearly generate A-buyers, the last two terms296

generate B-buyers. Hence,297

I ′A = βAΨ′(θW )φAθAθB + αAΨ(θW )θAθB , (12a)298

I ′B = βBΨ′(θW )φBθAθB + αBΨ(θW )θAθB . (12b)299
300

5 Comparison with stochastic simulations301

A numerical test gave perfect agreement of the behaviour predicted by this302

model with microscopic simulations performed using Gillespie’s algorithm303

[6, 7]. We compare our models with the underlying stochastic marketing304

process on two types of networks, namely a Poisson network and a scale-free305

network. In a Poisson network, every pair of nodes has identical probability306

of being connected by an edge. Thus, such a network has a Poisson degree307

distribution308

Pk =
λke−λ

k!
,309

and310

Ψ(x) = eλ(x−1) ,311

and is similar to a homogeneously mixed population. A scale-free network312

has a power-law degree distribution313

Pk ∝ kr314

where r < −1, and is commonly used to model social networks [see, e.g., 1].315

The random networks are generated by the configuration model as discussed316

in the introduction. The network parameters are listed in Figure 2.317

Each node in the social network is labeled as either a susceptible or a318

buyer. If it is a buyer, it is also labeled with the product it buys. To model319

marketing, a marketing node is created for each product. This marketing320

node is also labeled as a buyer, and is connected to every node in the social321
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network. Buyers transmit to their neighbors at rate β per edge, and convert322

their neighbors to buyers of the same product. Each marketing node trans-323

mits at rate α per edge, and converts its neighbors to a buyer of its product.324

Once a node becomes a buyer, it is always a buyer, and cannot be converted325

to the other product.326

A fixed network is generated, and simulations are repeated on this net-327

work. The ensemble average of the simulations are computed and compared328

with our marketing models. The degree distribution of the generated network329

is used for the computation of Ψ in our models.330

Figures 2 and 3 show the comparison between the single-product model331

(10) and the two-product model (11) with the corresponding stochastic sim-332

ulations, respectively. Both models agree with the ensemble average of333

stochastic simulations very well. We do not average over multiple realizations334

of random networks. However, as these averages should give the provided335

degree distribution for the configuration model, the average over both the336

random networks and the simulations on each random network should agree337

with the solutions of our models with this provided degree distribution.338

Figure 4 shows that in a scale-free network, which typically has many339

nodes in disconnected components, the product first diffuses quickly through340

word of mouth and advertisement in the connected components, then dif-341

fuses slowly in disconnected components through advertisement only. The342

expected fraction of nodes in disconnected components is Ψ(θW (∞)) where343

θW (∞) is determined by (6).344

6 Market share and advertisement345

As explained in (12), the two-product competition model gives the following346

equations for the fractions of buyers:347

I ′A = βAΨ′(θW )φAθAθB + αAΨ(θW )θAθB ,348

I ′B = βBΨ′(θW )φBθAθB + αBΨ(θW )θAθB .349
350

For the case where the transmission rates βA = βB are equal, it is rather351

straightforward to predict the market shares companies A and B will achieve:352

Theorem 6.1. Let βA = βB = β and φA(0) = φB(0) = 0. Then, for all353

t > 0,354

IA
IB

=
αA
αB

. (13)355
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Poisson scale free
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Figure 2: The comparison of the single-product model (10) with stochastic
simulations (average of 500 runs) on a Poisson and a scale-free network. The
network size for both networks is N = 20, 000. For the Poisson network, the
average degree 〈k〉 = 6. For the scale-free network, the degree distribution
is Pk ∝ kr where r = −2, with a maximum degree kmax = 66. The word-of-
mouth transmission rate β = 1, the advertisement rate α = 0.01. The long
term dynamics on the scale free network is shown in Figure 4.
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Poisson scale free

0.00

0.25

0.50

0.75

1.00

0 1 2 3 4 5 0 1 2 3 4 5
time

bu
ye

rs

legend

Product A, stochastic

Product B, stochastic

Product A, ODE

Product B, ODE

Figure 3: The comparison of the two-product model (11) with stochastic
simulations on a Poisson and a scale-free network. The networks are the
same as in Figure 2. The word-of-mouth transmission rates are βA = βB = 1,
the advertisement rate αA = 0.01, αB = 0.02.
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Figure 4: The fraction of buyers on a scale-free network converges to unity
in two stages: it increases quickly and spreads through the large connected
component, then approach unity exponentially through advertisement in dis-
connected components. The network and disease parameters are the same
as in Figure 2.
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This means that relative market share is proportional to relative advertising356

effort, regardless of the underlying network.357

Proof. Since358

(αBIA − αAIB)′ = αBI
′
A − αAI ′B

= βΨ′(θW )θAθB(αBφA − αAφB)
(14)359

we observe that the assertion will hold if we can prove that360

αBφA − αAφB = 0 (15)361

is satisfied for all t. By assumption this holds for t = 0.362

From Model (11),

(αBφA − αAφB)′ = (αBφA − αAφB)

[
−β + β

Ψ′′(θW )

Ψ′(1)
θAθB

]
.

This fact combined with the initial condition φA(0) = φB(0) = 0 implies that363

(15) holds. Finally, using IA(0) = IB(0) = 0, the assertion follows.364

Of course, the assumption that βA = βB is overly simplistic. In practice,365

it is to be expected that these rates are not only different (consumers may366

on average like one product more than the other, and transmit with more367

enthusiasm), but they may also change with time. Our models readily adapt368

to this reality.369

7 Concluding Remarks370

We have generalized the classical Bass model for market penetration with371

one or two new products to the contexts of populations modelled as random372

networks of configuration type. The resulting systems of equations involve373

the generating functions of the edge distributions under consideration but are374

otherwise simple ODE systems, which allow efficient simulations of product375

adoption in random networks. Indeed, numerical simulations comparing the376

predictions of the new models with microscopic stochastic simulations show377

excellent agreement. In the homogeneous limit our models are consistent378

with the classical Bass model. We also saw that the models allow qualita-379

tive conclusions about market shares: Indeed, if the transmission rates for380
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word-of-mouth transmission inside the network are independent of the type381

of product and if the competing companies start at the same time and in382

a “clean” population, then the ultimate market shares are determined com-383

pletely by the advertising efforts.384

Because of conceptual similarity, the single-product model (10) can be385

extended to study the spread of water-borne diseases such as cholera [see,386

e.g., 16, 17, 19]. The two-product model (11) can be similarly extended to387

study the spread of two competing diseases with strong cross-immunity, such388

as competing strains of seasonal influenza [see, e.g., 4, 15].389

There are many additional numerical and analytical experiments to be390

done with these models, and we intend to address these issues in future work.391

For example:392

• What are the ultimate market shares if the transmission rates βA and393

βB are different, but the same advertising efforts are used? While this394

question is not easily answered by analytical tools, it can now be dealt395

with by numerical simulation.396

• What are optimal advertising strategies for such a scenario, given that397

advertising is expensive?398

• What advantage does “an early marketing start” produce for one of399

the companies?400

• It would be very interesting to match our model with real data. This,401

of course, will require collaboration with the business community.402

• Our model assumes a fixed random network. How should one incorpo-403

rate dynamic changes in the network?404

• Our model is a deterministic model. But the real marketing process is405

a random process. What would the distribution of product uptakes in406

such a setting?407
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A The homogeneous mixing limit413

In a homogeneously mixed population as assumed in the original Bass model,414

the two-product case is modeled by the two equations415

I ′A = qAIAS + αAS (16a)416

I ′B = qBIBS + αBS, (16b)417
418

where we have employed notation consistent with the previous sections. Here419

we will show that these equations emerge naturally in a suitable limit if the420

model from Section 4 is considered on a complete graph with N � 1. In this421

situation every node has degree N − 1, thus S = Ψ(θW )θAθB = θN−1W θAθB422

and423

φ′A = −βAφA + (N − 2)θN−3W βAφAθAθB + θN−2W αAθAθB ,424

φ′B = −βBφB + (N − 2)θN−3W βBφBθAθB + θN−2W αBθAθB .425
426

Thus427

S ′ =(N − 1)θN−2W (−βAφA − βBφB)θAθB − αAθN−1W θAθB−428

αBθ
N−1
W θAθB429

=− qAS
φA
θW
− qBS

φB
θW
− αAS − αBS,430

431

where qA = βA(N − 1), qB = βB(N − 1).432

Recall that βA and βB are transmission rates per edge. The limit of433

interest is N → ∞, βA → 0, βB → 0 such that qA and qB are constant. We434

can therefore write βA = qA
N−1 , βB = qB

N−1 , and therefore435

θ′W = − qA
N − 1

φA −
qB

N − 1
φB ≥ −

qA + qB
N − 1

.436

An integration gives437

1 ≥ θW (t) ≥ 1− 1

N − 1
(qA + qB)t,438

which shows that θW (t)→ 1 for any t as N →∞.439
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Asymptotically, we should have IA ≈
φA
θW

and IB ≈
φB
θW

. In fact, we find440

that441 (
φA
θW

)′
=

1

θW
φ′A −

φA
θ2W

θ′W442

=− βA
φA
θW

+ (N − 2)θN−3W βA
φA
θW

θAθB + θN−3W αAθAθB+443

βA
φ2
A

θ2W
+
φA
θW

βB
φB
θW

444

=

[
(N − 2)qA
N − 1

φA
θW

+ αA

]
S

θ2W
+

1

N − 1

φA
θW

[
−qA + qA

φA
θW

+ qB
φB
θW

]
.445

446

As N → ∞ while qA, αA and qB are kept constant, and by using that
θW (t)→ 1, (

φA
θW

)′
= qAS

φA
θW

+ αAS.

Similarly, we have447 (
φB
θW

)′
=

[
(N − 2)qB
N − 1

φB
θW

+ αB

]
S

θ2W
+

1

N − 1

φB
θW

[
−qB + qA

φA
θW

+ qB
φB
θW

]
,448

and as N →∞ while qB, αB and qA are kept constant,(
φB
θW

)′
= qBS

φB
θW

+ αBS.

Clearly, these two limit equations are just Equations (16).449
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