CONJUGATION-INVARIANT SUBSPACES AND LIE IDEALS IN
NON-SELFADJOINT OPERATOR ALGEBRAS

L.W. MARCOUX! AND A.R. SOUROUR!

ABSTRACT. We show that a weakly closed subspace S of a nest algebra A is closed under
conjugation by invertible elements in A, i.e. that a~'Sa = S if and only if S is a Lie
ideal. A similar result holds for not-necessarily closed subspaces of algebras of infinite
multiplicity. Furthermore, we give an explicit characterisation of weakly closed Lie ideals
in a nest algebra.

1. INTRODUCTION.

1.1. Let A be an associative algebra with identity. A Lie ideal in A is a linear manifold
L satisfying [A, L] C L, where [a,b] = ab — ba for all a,b € A. A linear manifold § in A
is said to be conjugation-invariant, or invariant under conjugation by invertible elements,
if a7 'Sa C S for every invertible element a € A. The connection between these two
notions has been investigated by several authors. One of the earliest such investigations
is by Herstein [11, 12]. In [24], it was show that the two notions are equivalent for norm-
closed subspaces of B(#), the algebra of all bounded operators on a Hilbert space . The
equivalence was established in [8] for not-necessarily closed linear manifolds in B(#). Similar
results for von Neumann algebras and certain C*-algebras can be found in [17] and [15].

1.2. In this paper we shall examine the relationship between these two notions for three
main classes of non-selfadjoint operator algebras. These are: nest algebras, triangular uni-
formly hyperfinite (TUHF) algebras, and algebras of infinite multiplicity (which can also
include some selfadjoint examples).

Our results show that if a linear manifold £ in a nest algebra (resp. TUHF algebra) is
weakly (resp. norm) closed, then L is a Lie ideal if and only if it is conjugation-invariant.
If A C B(#H) is a weakly closed algebra of infinite multiplicity, then the same conclusion
holds with no topological assumptions about the linear manifold.

1.3.  We end this introduction by giving the easy proof of the implication that in a Banach
algebra, closed subspaces invariant under conjugation are Lie ideals. This result is in a
manuscript [24] written by Topping in 1970 which was never published due to his untimely
death.

1.4. Theorem. (Topping). Let A be a Banach algebra. If S is a closed, conjugation-
invariant subspace of A, then S is a Lie ideal in A.

Proof. Let a € A and z € S. Then f(t) = e'®ze~"* € & for every t € R. Upon taking
derivatives at t = 0, we get that ax — za € S. Thus S is a Lie ideal. O
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2 CONJUGATION-INVARIANT SUBSPACES AND LIE IDEALS

2. NEST ALGEBRAS.

2.1. The following definitions can all be found in [2], and we refer the reader to this source
for general information on nest algebras.

A nest N on a Hilbert space H is a chain of closed subspaces of H which is closed
under the operations of taking arbitrary intersections and closed linear spans, and which
includes {0} and H itself. To each subspace N € N we can associate the orthogonal
projection P(N) of H onto N. We can and do identify N with the chain of projections
{P(N) : N € N} obtained from N, and speak of elements of the nest as subspaces or
projections interchangeably.

Corresponding to each nest A is the algebra 7 (N) of all operators T' on H such that
TN C N for all N € . This is always closed in the weak operator topology. The diagonal
D(N) of a nest algebra T (N) is the von Neumann subalgebra 7(N) N T(N)*. The core
C(N) of the nest algebra 7 (N) is the von Neumann algebra generated by the projections
{P(N) : N € N}, or equivalently, C(N) is the commutant of D(N'). The core C(N) is
always a subalgebra of the diagonal D(N).

Given two elements E,F € N with E < F, F — E is called an interval of the nest. The
nonzero minimal intervals are called atoms. A nest is said to be atomic if the atoms of the
nest span H and said to be continuous if it has no atoms.

2.2. Let A denote the set of atoms of a nest N. The atomic-diagonal of T(N) is the
weakly closed algebra Dyiom(N) generated by {PB(H)P : P € A}. There is a canonical
expectation A from 7 (N) onto Dytom (N) defined by

A(T)=Y_ PTP.
PeA

A subset M of T(N) will be called atomic-diagonal disjoint if A(T) = 0 for every T € M.

2.3. Associative ideals. We shall make use of the following characterisation of weakly
closed associative ideals in 7T (N) from [6].

Theorem. (Erdos-Power). Let T be a weakly closed associative ideal in T(N). Then
there exists a left order-continuous order-homomorphism E — E from N into N such that

E < E for each E € N and
I={TeB(H):(I—E)TE =0 for all E€N}.
Conversely, for every left order-continuous order-homomorphism E +— E with E < FE for

all E € N, the above set T defines a weakly closed associative ideal.

We shall also require the following Lemma from [13].

24. Lemma. Let T be a weakly closed associative ideal in T(N) and let E E be the
corresponding order-homomorphism of the nest N. Then

I={TeTWN):(E—ET(E—-E)=0 for dil E€ N}

In the following, span M denotes the linear span of a set M, and wk — cl(M) denotes
the closure of M in the weak operator topology.
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2.5. Proposition. Let T(N) be a nest algebra.
(a) Let T be an atomic-diagonal disjoint weakly closed associative ideal in T(N'). Then

Z =wk —clspan{PT(I —P):T€Z,PecN}.
(b) Let Z be a weakly closed associative ideal in T (N'), and let
IT =wk —clspan{PZ(I — P): P € N'}.

Then It is an atomic-diagonal disjoint weakly closed associative ideal. Furthermore,

It ={T e€I:A(T)=0}.

Proof. (a) Let Zt = wk —cl span{PZ(I — P) : P € N'}. It is easy to see that It is
a weakly closed associative ideal, and ZT C Z. Let E — E and E — E be the order-
homomorphlsms of the nest associated with Z and Z* respectively. Thus E < E. We will
show that £ = E and so I+ = T. o

To prove this, assume to the contrary that E) < E; for some E; € N. For any X € B(H),
the operator S := (Ez - E)X(I — E,) is evidently in Z. Now observe that if F; has no
immediate predecessors, then by the left order-continuity of the function £ +— E, there
exists an element ' € N with F < E; and F > E’\l Consider a rank one operator
T € T(N) satisfying T = (F — E))T(Ey — F), ie., T = £ ®* with 5 € (E; — F)H and
£ e (F-— E’l)?-[ If F4 has an immediate predecessor take F' = (F1)— and T a rank one
operator in T (N) satisfying T = (E; — El) (Ey — F). In either case, we have

= (G- B)T(Fy — F)

where G = Ez or F and Ez <G< E; We now show that T' € 7.

We consider three cases. First consider the case £ > E;. Then (I — E’)TE = 0, since
(I — E)(G — E;) = 0. Next, consider the case E < F. It follows that (I — E)TE = 0 due to
the fact that (B, — F)E = E — E = 0. In the third case, F < E < E;. Hence G = F and

o (I — EYTE = (E — E)(F — E\)T(E, — F)E, and since (I — E)(F — Ey) = 0, we again
get that (I — E)TE = 0, proving that T € T.

Next, we prove that T € Z+. This follows from the equation 7' = FT(I — F'), which
we verify presently. In the case when G = F, ie. T = (F — E\l)T(El — F), the result
follows immediately since F' > F — E\l and £ — F < I — F. In the remaining case,
F = (El)_ and also E1 (E1)- since 7 is atomic-diagonal disjoint. Hence E; < F and so

F(E, — E1) = E; — E1, which again leads to T = FT(I — F). This proves that T € Z*.
However,

(I-E\)TE, = (I-E)(G-E)T(E - F)E
= (G- E)T(E: - F)
T #0.
This contradicts Theorem 2.3.
(b) This follows easily, given (a). O

3. LIE IDEALS IN NEST ALGEBRAS.

3.1. Let £ be a weakly closed Lie ideal in 7 (N). As in [13], we define
I=ZI;:=wk—clspan{PT(I-P): T €L, PeN}.
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3.2. Proposition. Let L be a weakly closed Lie ideal in T(N) and let T be defined as
above. Then T is a weakly closed associative ideal in T (N) that is atomic-diagonal disjoint.
Furthermore, T C L.

Proof. The fact that Z is atomic-diagonal disjoint is obvious. The other assertions are
proven in [13].

3.3.  We shall now show that there is a larger ideal J, constructed from Z by adding some
atoms, and that

J°CLCT+Cy,
where J° denotes the set of trace-zero operators in J (to be defined later), and C7 is a
certain subalgebra of the core C(N). This is a refinement of the results of [13] where it was
shown that there exists a subalgebra Dz of the diagonal D(N) such that Z C L C T + D7.
Indeed, the inclusions we obtain in this article are “tight enough” to conclude that every
linear manifold M satisfying J° C M C J + Cy is automatically a Lie ideal. Examples
in [13] show that there are subspaces between Z and Z + Dz that are not Lie ideals.

3.4. We now describe certain enlargements of a weakly closed associative ideal by certain
atoms. Let Z be a weakly closed atomic-diagonal disjoint ideal in T (V). Let E — E be the
corresponding order-homomorphism of the nest. In this case E < E_. We associate with
7 a certain subset Az of the atoms of N which are said to be atoms adjacent to Z. These
are defined by:

Ar={E-E_:E=E_}.
For any arbitrary subset A; of Az, we define the saturation of Z by A; to be the ideal

IV A =wk—c{T+ ) {PBH)P:PcA}}.

It is straightforward to verify that ZV A; is also a weakly closed associative ideal in T (N)
and that the corresponding order-homomorphism of the nest is E +— E, where

= {E fE=E and E—E €A

E  otherwise

3.5. For every ideal [J, we associate a Lie ideal J°, called the zero-trace part of J, defined
by
J°={A€J :tr PAP =0 for every atom P in the nest with dim P < oo}.
In particular, for the ideals Z V A; defined above, we have
(TVA)° = wk—c{ZT+ > {PB(H)P:P €k, dim P=o0}
+Zn{z P(sl,)P: P € Ay, dim P =n < oo}}

where sl,, denotes the Lie ideal of zero-trace matrices in M,,. Next, we borrow a notation
from associative ring theory. If A is an algebra and L a Lie ideal in A, we define

[A:L]:={a€A:[a,z] € L for all z € A}.

In analogy with ring theory terminology, this may be called the “Lie residual quotient” of
A by L. It may be viewed as the “lifting” of the “centre” of A/L to A.



IN NON-SELFADJOINT OPERATOR ALGEBRAS 5

3.6. Lemma.

(i) If £ is a Lie ideal in an associative algebra A, then [A : L] is a Lie ideal that
includes L. Furthermore, every linear manifold M satisfying LC M C[A: L] is a
Lie ideal.

(ii) If, in addition, A is a weakly closed operator algebra and L is weakly closed in A,
then [A : L] is weakly closed.

Proof. Obvious. O

We next define a certain subalgebra of the core associated with a weakly closed ideal.

For a weakly closed ideal Z in 7 (N) with corresponding order-homomorphism E — E of
N, define

Cr = {D€eC(N): For every E € N, there exists a scalar
Mg such that (E — E)D(E — E) = Ag(E — E)}

The proof of the following Proposition is straightforward, and is omitted.

3.7. Proposition. Let T be a weakly closed ideal in a nest algebra T(N). Then Cz is a
von Neumann algebra.

3.8. Proposition. Let T be a weakly closed ideal in a nest algebra T(N') and let I° be the
zero-trace part of T. Then
(a) [T(N): T = [T(N) : 7] = T+ Cx.
(b) If, furthermore, T is atomic-diagonal disjoint, Ay C Az, and J = TV Ay is the
saturation of T by A;, then Cz =Cy.

Proof. (a) The first assertion, namely that [T (N) : Z°] = [T(N) : Z], is obvious. Next,
let A=B+ D with BeZ and D € Cz. T € T(N), then [T, A] = [T, B] + [T, D]. The
first commutator [T, B] is evidently in Z. As to the second commutator, we have that for
E<FE, _ _ _ _

(E — E)(TD — DT)(E — E) = (E — E)(TAg — A\gT)(E — E) = 0.
It follows from Lemma 2.4 that TD — DT € Z. Thus [T, A] € Z. This proves that Z+ Cz C
[TW) : 1].

To prove the reverse inclusion, assume that A € [T(N) : Z]. Let m¢ be an expectation
of T(N) onto the core C(N). (Such expectations always exist; see ([2]; Theorem 8.5). Let
B =A—mn¢(A). For E < E, we have

0 = (E—E)AT|(E-E)
— (B - B)A(E - B), (B - Byr(B - B)]
Thus (E — E)A(E — E) is in the commutant of the nest algebra (E — E)T(N)(E — E) on

the Hilbert space (£ — E)(H). As the commutant of a nest algebra is trivial ([2]; Cor. 19.5),
we get that (F — E)A(E — E) = Ag(F — E). for a scalar Ag. Hence
(E—E)B(E—E) = (E—E)A(E-E)— (E— E)nc(A)(E — E)
= Ap(F— B)— ne((E — B)A(E - B)
= Ap(E - E) — rc(\s(E - E))
= 0.
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Therefore B € . _ _ _
The above calculation also shows that (E — E)n¢(A)(E — E) = Ag(E — E). Thus
mc(A) € Cz and so A = B + n¢(A) € Z + Cz. This ends the proof of part (a).

(b) Assume that E + E is the order-homomorphism of A associated with J. Thus
E=-FEifE—-FEc Ay, and E = E otherwise. The inclusion CrCC C is quite obvious. To
prove the reverse inclusion, assume that D € C; and consider (E — E)D(E —E) for E < E.
If E — E is an atom, then (E — E)D(E — E) = Ag(E — E) due to the fact that D € C(N)

and so its compression to any atom must be a scalar. If £ — E is not an atom, then E= E
and so _ _ o o _

(E-E)D(E—-E)=(E—-E)D(E—-E)=Mg(E—E)
due to the fact that D € Cs. In either case, we find that D € Ct

|

We are now ready to state the main result of this section. Recall that for an algebra A,
we denote the group of invertible elements of A by A~!.

3.9. Theorem. Let L be a weakly closed subspace of a nest algebra T(N). The following
conditions are equivalent:

(a) L is conjugation-invariant, i.e., A"1LA C L for every A € T(N) !
(b) L is a Lie ideal in T (N).
(c) There exist an atomic-diagonal disjoint ideal T of T(N) and a subset Ay of the
atoms Az adjacent to I such that
(IVAl)O CLC [T(N) IIVAl] = (IVAl) +Cr.
(d) There exists an associative ideal J of T(N) such that

J°CLC[TWN): T =T +Cs.

Proof. That (a) implies (b): follows from Theorem 1.4.

To prove that (b) implies (c), assume that £ is a Lie ideal and that Z = Z. is the
corresponding associative and atomic-diagonal disjoint ideal defined in paragraph 3.1. Let
Ay be the subset of the atoms Az adjacent to Z defined by

Alz{PEAzpﬁpg(CP}

That Z C L follows from Proposition 3.2. Next, we show that (spanA;)° C L. Assume
that P € A;. It is readily verified that PLP is a weakly closed Lie ideal in PB(#)P. Since
PLP ¢ CP, it follows from [8] that PLP = PB(H)P or PLP = P(sl,)P - the latter
alternative may be present when dim P < oo. This easily leads to (Z vV A;)° C L.

Next let L € £ and let X — X be the Erdos-Power function associated with the ideal
ZV A;. For an arbitrary T € T(N) and E € N, consider

S = (E-E)(LT - TL)(E — E).

= E, then § = 0. Otherwise E = E and § = (B — E)(LT — TL)(E — E). Let
Hi= (B~ B, Ni=(E-EN, L = (E- B)L(E - B), i = (E - B)L(E - E)
restricted to H1, and T} = (E — E)T(E — E). We have a nest algebra 7 (N;) in B(#;) and

a Lie ideal £ of T(N7) with the corresponding “off diagonal” associative ideal Z, equal
to 0, thus PLy(I — P) = (I — P)L1P = 0 for every P € N7. Hence £ is included in the

=
tijll
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diagonal D(N7). Furthermore, S = LTy — T} L1. We shall show that S = 0. Towards this
it suffices to show that L is a scalar multiple of the identity in B(Hl)

We consider two cases according to whether E=E_ormnot. If E = E_, then N7 is
trivial, 7(N1) = B(H1) and Ly is a weakly closed Lie ideal in B(#H;). Also, the atom
E —E_ ¢ Ay, and so, by the very definition of A;, we have £; included in the space of all
scalar multiples of the identity on H; as required. In the case E < E_, the result follows
from ([13]; Thm. 12). For the sake of completeness, we include a proof.

Let P € N1, A= PL1P, B= (I — P)Li(I — P) and let X € PB(H1)(I — P). Thus
X € T(N7). It follows that Li X — XL; € £4. However, an easy calculation shows that
L1 X — XL, € PB(H1)(I — P), while it is also included in D(N7) by virtue of the fact that
L1 € D(N). This is satisfied only when L1 X — X L; =0, i.e. AX — X B = 0. By considering
only rank one operators X, we see that every vector in PH; is an eigenvector of A. Thus
A = AP for some A € C. It then follows easily that B = A(I — P) and so L1 = A+ B = Al

Now, we have shown that S = 0, i.e., that (E — E)(LT — TL)(E — E) = 0. It follows
by Lemma 2.4 that LT — TL € TV Ay, that is, L € [T(N) : ZV A;]. Finally, the equation
[TN):ZV A= (ZVA)+Cz follows from the previous Proposition.

That (c) implies (d) is obvious.

To prove that (d) implies (a), let L € £, T € T(N)~!. Write L = K + D with K € J
and D € Cy. Let E — E be the Erdos-Power function on N associated with J. Now
T'KT — K € J as J is an ideal. Also, (E — E)(T~'DT — D)(E — E) = 0, since
(E—E)D(E—E) = Ag(E—E) and X — (E — E)X(E — E) is an algebra homomorphism.
Thus T-'DT—-De J by Lemma 2.4 and so T-'IT - L e J.

The compressions of L and T~'LT to any finite-dimensional atom have the same trace,
so T7ILT — L € J° C L. Therefore T~'LT € L. O

Recall that a commutator in an associative algebra A is an element of the form [a,b] :=
ab—ba for some pair of elements a,b € A. An operator T is said to be a square-zero operator
if T2 = 0.

3.10. Corollary. Let T(N) be a nest algebra. Each of the following is weakly dense in
T (N)°, the set of all operators in T (N') with trace zero.

),
(a) The span of the commutators;
(b) The span of the nilpotents;
(c) The span of the quasi-nilpotents;
(d) The span of the square-zero operators.

Proof. Let L be the weak closure of any of the sets above. Then £ is a conjugation-
invariant subspace and hence it is a Lie ideal. Let Z be the corresponding atomic-diagonal
disjoint ideal as in paragraph 3.1. As before, let A be the expectation on the atomic-diagonal
and U = T(N) Nker A, i.e., U is the maximal atomic-diagonal disjoint ideal.

Let E€ N, T € T(N),and let S = ET(I—E). The operator S is evidently a square-zero
operator, and hence both a nilpotent and a quasi-nilpotent. It is also a commutator since
S =[E,S]. Thus S € Z. It follows that Z O wk — cl span{PT(N)(I — P) : P € N'}. By
Proposition 2.5, we conclude that Z O U and hence 7 = U.

Furthermore, for every atom P € N, the Lie ideal £ includes all commutators and all
quasi-nilpotents in PB(H)P = B(PHP). When dim H = oo, every operator is a sum
of commutators ([10]; Problem 234), and is a sum of square-zero operators [7]. When
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dim H < o0, it is well-known that the span of commutators (respectively, nilpotents, square-
zero operators) is the set of all operators of trace zero. Thus £ includes (7 (N))?, the zero
trace part of 7(A). The reverse inclusion is obvious. O

3.11. Corollary. Let T(N) be a nest algebra. The linear span of the idempotents is weakly
dense in T(N).

Proof. Let L be the weak closure of the span of the idempotents. As in the proof of
Corollary 3.10, for every E € N, T € T(N), the operator S := ET(I — E) € L, since
S=FE—(E—-ET(I — E)), a difference of two idempotents. On the other hand, the span
of idempotents in B(H) is all of B(H) [23, 20]. Thus £ includes PB(H)P for every atom P
in N and also includes 7(N) Nker A, and so £ = T (N). ]

3.12. Example. Let us now consider two examples. In the first instance, we sup-
pose {’Hj}?:l are finite dimensional Hilbert spaces, and that H = @?:17{]-. Let N =
{{0}, @leHj, 1 < k < 5} be our nest.

Consider the associative ideal J of T(N') given by:

A A Az Ay Asgs
0 0 Ay A

J=A{ 0 A3y Ass | : Ay €B(Hj,Hi)}
Ap Ays
0

Then J° = {A = [A;j] € T : trace(A11) = trace(Ass) = 0}, while

An A Az A Asgs
al 0 A24 A25

J+Cr=A{ al Az Ass | : Ay € B(Hj,Hi), o, € C}.
Ays Ay
BI

By Theorem 3.9(d), every linear manifold £ in 7 (N) satisfying J° C L C J +Cy7 is a
Lie ideal.

3.13. Example. The Volterra nest is a continuous nest on H = L?([0, 1] with respect to
Lebesgue measure, defined as follows: For each s € [0, 1], let

N, = {f € L*([0,1]) : f =0 almost everywhere on [s,1]}

and set N' = {N; : s € [0,1]}. The corresponding nest algebra is known as the Volterra nest
algebra and is denoted by V. The diagonal and the core of the Volterra algebra coincide and
are equal to the algebra of all multiplication operators My, g € L*°([0,1]), where M, f = gf.

By the Erdos-Power Theorem, the set of weakly closed associative ideals of V is in a
one-to-one correspondence with the set of all increasing lower semi-continuous functions
n :[0,1] — [0, 1] such that n(z) < z for every z. Given an increasing, lower semi-continuous
function 7 as above, the corresponding lie ideal Z(n) is the set of all operators that map
Ny into N, for every s. Observe that the Volterra nest has no atoms, and so Z(n) is
automatically atomic diagonal disjoint. It is easy to see that Cz(,) is the subalgebra of the
core consisting of all multiplication operators My, where g € L*°([0,1]) is constant on each
connected component of the set {z € [0,1] : n(z) < z}.
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If £ is a linear manifold in V such that
I(n) € L C I(n) + Cr(y),

then it follows that £ is a Lie ideal in V. Conversely, by Theorem 3.9, every weakly closed
Lie ideal in V is of this form.

It is natural to ask whether the associative ideals in Theorem 3.9 are unique. Our next
result provides an answer.

3.14. Proposition. Let L be a weakly closed Lie ideal in a nest algebra T(N) and let T
and J be associative ideals satisfying the inclusions in parts (c) and (d) of Theorem 3.9.
Let A1 also be as in that Theorem. Then

(a) Z=Z;:=wk—clspan{ET(I — E): E € N'}.

(b) Ay DAy :={P €Az : PLP Z CP}.

(c) Ay C AaL := Ay U the set of all atoms of dimension one that are adjacent to I.

(d) ZIVA; CTCIVA].
Thus Z, J°, [T(N) : ZV A1] and J + Cy are uniquely determined by L, while J and Ay
are uniquely determined by £ modulo the one-dimensional atoms of T(N).

Proof. (a) We have
IC(ZIVA)CLC(ZVA)+Cr.
For every E € N, we also have
EI(I - E) C EL(I - E) C E(ZV A)(I — E) + EC(I — E).
However ECz(I — E) = 0 and for every atom P, we have E(PTP)(I — E) = 0. Thus
EL(I-E)=EI(I - E).
By Proposition 3.2, we find that Z = 7, proving the uniqueness of Z.

(b) Assume that P € Az and PLP ¢ CP. Since L C (ZV A1) + Cz, then PLP C
PA P+ CP. Thus P € A;.

(c) Assume that P € A; and that dim PH > 2. Since Ay C (ZV A1)° C L, we have
PA{P C PLP, and so PLP ¢ CP, ie., P € A .

(d) From the equation J° C L C J + Cz, we have, for any P € N,
PJ(I—P)=PJ°(I - P)CPL(I-P)CPJ( - P).

Thus PJ(I — P) = PL(I — P), which implies that J = Z V B, where B is a subset of the
atoms of N. The results of (b) and (¢) now imply (d). The rest of the assertions are now
evident. O



10 CONJUGATION-INVARIANT SUBSPACES AND LIE IDEALS

3.15. REMARK. In [8], it was shown that a linear manifold £ in B(#) is invariant under
conjugation by invertible operators if and only if it is invariant under conjugation by unitary
operators, thereby providing an alternate description of Lie ideals in that algebra. Similar
results also hold for other classes of selfadjoint operator algebras [14, 15].

However, the concept of unitary invariance is inappropriate for non selfadjoint algebras
for several reasons. In a nest algebra 7 (N), the only elements in 7 (A') whose adjoints also
lie in 7 (N) necessarily lie in the diagonal D(N'). If the nest is not trivial, i.e., T(N) # B(H),
then we observe that the diagonal D(N) is invariant under conjugation by diagonal unitaries
but is obviously not a Lie ideal, indeed if P € N, 0 # P # I, then it is evident that
[P, T(N)] £ D(N)

It is true that nest algebras may contain unitary operators which do not lie in D(N).
For example, If A is an atomic nest that is order-isomorphic to the integers and with all
atoms of dimension 1, then 7(N') contains a bilateral shift. In fact, it was shown in [1, 3]
that in many nest algebras, every element can by written as a linear combination of unitary
operators in T (N'). However, this is not of much help since if we consider any collection U
of unitary operators on H such that 7 (A) is invariant under conjugation by U, then upon
taking adjoints, we see that 7 (N)*, and hence also D(N) is invariant under conjugation by
U but is not a Lie ideal. Conversely, for every P € N, the set Lp := PT(N)(I — P) is a
Lie ideal (indeed it is an associative ideal). However by considering rank one operators in
Lp, it is evident that conjugation X — U* XU by a unitary operator U leaves Lp invariant
if and only if U* commutes with P. Therefore, if every Lp is invariant under conjugation
by every unitary in U, then we must have U C D(N).

4. ALGEBRAS OF INFINITE MULTIPLICITY.

4.1. In Theorem 3.9 we saw that if £ is a weakly closed linear manifold in a nest algebra
T(N), then (i) £ is a Lie ideal if and only if (ii) £ is invariant under conjugation by
invertibles. We shall now demonstrate that if &' has no finite dimensional atoms, then (i)
and (ii) are equivalent with no topological restrictions on the linear manifold £. In fact,
the results hold in even greater generality.

4.2. Let A be a weakly closed subalgebra of B(H). If K is a second (complex separable)
Hilbert space, then the tensor product A ® B(K) is defined as the weak operator closure
of the span of all elementary tensors A ® B acting on H ® K, where A ® B is determined
by the formula (A ® B)(z ® y) = Az ® By. If K is identified with #2 and H ® K with
HOHDHD---, then it is not too hard to see that A ® B(K) may be realised as the set
of all infinite matrices of operators [4;;] where A;; € A and where [4;;] defines a bounded
operator.

A weakly closed subalgebra of B(H) is said to be of infinite multiplicity if A ® B(K) is
isomorphic to A. It is obvious that if T' is invertible, then 7' AT has infinite multiplicity
if and only if A does. Cawveat: This notion of multiplicity is different from other notions
of multiplicity which are invariant under conjugations by unitary operators on H, but not
under similarity.

The next result is well-known. It readily follows from the Similarity Theorem ([2]; p.162).

4.3. Proposition. A nest algebra T(N) has infinite multiplicity if and only if N' has no
finite dimensional atoms.
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4.4. Let A C B(H) be a unital subalgebra. An operator X € A is said to be interpolating
in A if there exist L, R € A so that LXR = I. These were studied by J. Orr [18] who
obtained the following result when 7 (N) is a continuous nest algebra.

4.5. Theorem. (see [4]). Let T(N) be a nest algebra of infinite multiplicity. Then the
set of interpolating operators in T(N') is (norm) dense in T (N).

4.6. Our goal is to show that if A is a weakly closed unital subalgebra of B(#), and if
the set of interpolating operators is norm dense in A, then a linear manifold £ is a Lie
ideal precisely if £ is invariant under conjugation by invertibles. In essence, all of the tools
required to prove this have individually been obtained elsewhere, but in different contexts.
All that is required is to observe that the proofs given there carry over with only minor
modifications to our setting. As such, we shall refer the reader to the original sources for
the proofs of the following Proposition; but first we require a couple of definitions.

An operator A in a unital algebra A is called an involution if A2 = I. (We remark that
some authors refer to these as symmetries, while others reserve the term “symmetry” for
self-adjoint involutions.) A unipotent of order k in A is an element of the form 1+ N, where
NE-1 £ 0 = N,

4.7. Theorem. Let A C B(H) be a weakly closed, unital algebra of infinite multiplicity.
Then

(a
(

) every A € A is a sum of two commutators in A;
b) every A € A is a sum of eight idempotents in A;
(c) every A € A is a sum of eight nilpotents of order 2 in A;
(d) if the set of interpolating operators in A is dense, then every invertible element of
A is a product of at most 28 involutions;
(e) if the set of interpolating operators in A is dense, then every invertible element of
A is a product of at most 36 unipotents of order 2.

Proof. (a) This is Proposition 2.6 of [16], and as mentioned there, the proof is identical
to that of Halmos ( [10]; Problem 234), where it is demonstrated for the special case where

A = B(H).
(b) and (c) follow from the results of Pearcy and Topping [20].

(d) This follows from Lemma 3.1 and Lemma 3.2 of [5], combined with the remark at
the end of [4].

(e) An examination of the proofs of Lemmas 3.1 and 3.2 in [5] and Theorem 1.4 in [4]
shows that every invertible is a product of 8 unipotents of order two, 2 involutions conjugate

to [ r0 ], 3 invertibles of the form [ 40 ], and 2 invertibles of the form [ é X :|

0 -1 0 I
Note that by the proofs of Lemmas 3 and 4 of [9], every invertible element of the form
[ 61 ? ] can be written as a product of 4 unipotents of order two. Furthermore,

oy l=lov]oT]
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and hence is a product of at most 5 unipotents of order 2. As for the invertible elements

conjugate to [ é _OI ], consider the following.
I 0 I 0 0
Since —I € A ~ My (A), we can identify with [ 0 —I 0 |[. From the
0 =1 0 0 -I
Corollary to Theorem 1 of [22], this latter operator is a product of three unipotent operators

of order 2 in M5(C) ® I C A. Indeed, in My (C), we can write [

0
0 1 ] as a product of

three unipotent matrices Uy, Us,Us which are necessarily of order 2. Let V; = [ (1) (9‘ ],
2
1 <4 < 3. Then each V; is unipotent of order 2 in Ms(C), and

I 0 0
0 -1 0 |@I=WVel)(Vhel) (VeI
0 0 -I

is a product of three unipotents of order 2. Since unipotents of order 2 are invariant under
conjugation, we have written each such invertible as a product of 3 unipotents of order two.

In conclusion, we deduce that every invertible in A is a product of at most 36 unipotents
of order 2. O

4.8. Theorem. Let A C B(H) be a weakly closed unital algebra of infinite multiplicity and
suppose that the interpolating operators are dense in A. Let L C A be a linear manifold.
The following are equivalent:

(a) L is a Lie ideal;

(b) L is invariant under conjugation by all invertibles;

(¢) L is invariant under conjugation by involutions;

(d) L is invariant under conjugation by unipotents of order 2.

Proof. To prove that (a) implies (b), we argue as in [8]. if S is an involution in A and
M € L, then

ST'MS =M — %[5, [S, M]] € L.

Since every invertible in A is a product of at most 28 involutions by Theorem 4.7, we are
done.

To prove that (b) implies (a), we again use a calculation from [8]. If F € A is an
idempotent, then S = E +i(I — E) is invertible and

[E,M]=(S"'MS—-SMS™")/2i e L

for all M € L. Since, by Theorem 4.7 (b), each element of A is a sum of eight idempotents
in A, we get that £ is a Lie ideal.

Finally the equivalence of (b), (c) and (d) is clear in view of Theorem 4.7. O

4.9. Corollary. If N is a nest with no finite-dimensional atoms, then a linear manifold
L in T(N) is a Lie ideal if and only if it is invariant under conjugation.
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5. AN EXAMPLE.

5.1. 'This section is devoted to the characterisation of the Lie ideals of a particular algebra
of infinite multiplicity. As before, all Hilbert spaces are assumed separable.

Let 7, denote the algebra of all n X n upper triangular matrices over C. We shall denote
the standard matrix units of 75 by F11, F19 and Ego. In considering the algebra To®72 C g,
we shall denote the matrix units by {F;; : 1 < i < j <4, (4,7) # (2,3)}. We shall also
denote the algebra of n X n diagonal matrices by Dj,.

The algebra we shall consider is A = B(H) ® (T2 ® T2). It is clear that A is a weakly
closed unital operator algebra of infinite multiplicity. We shall first show that .4 possesses
a dense set of interpolating operators. By Theorem 4.8, it would then follow that the Lie
ideals of A coincide with those linear manifolds of A which are invariant under conjugation
by invertibles. The second step will be to characterise all of the Lie ideals of A.

5.2. Lemma. Let @ C T, be a unital algebra which includes the diagonal of T,. Let
R C B(H) be a weakly closed unital algebra of infinite multiplicity with a dense set of
interpolating operators. Then R ® Q s a weakly closed unital operator algebra having
infinite multiplicity and a dense set of interpolating operators.

Proof. The only statement which is not completely apparent is the last - namely that
R ® Q has a dense set of interpolating operators. Let [4;;] € R® Q C R ® Tp. Let € > 0.
For 1 < i < n, choose A}, € R such that A}, is interpolating and ||4; — AL|| <e. If i # 7,
let A;j = Ajj, and set A’ = [A;J] Choose Lj;, R;; € R so that Lj; Al;R;; = 1,1 <1 <mn. Let
L=L1®---®Ly,and R=Ri1®---® Ry,. Then LAAR=T1+ N, where N € R® Q is
nilpotent (of order at most n). Thus LA'R is invertible in R ® Q, and so A’ is interpolating
in R® Q. Since ||A' — A|| = maxi<i<n ||4}; — Aii]| < ¢, it follows that R ® Q has a dense
set of interpolating operators. O

5.3. Lemma. Let R be a unital algebra and Q@ = R ® Ts.

a) K is an ideal of Q if and only if K = Ki Ko , where
0 K
4
(i) K1,Ks9, and K4 are ideals of R;
(ii) K2 D K1+ K4
— [Ra K:l] ICZ
0 @K = | T B
Proof. Elementary. O

As an easy consequence, we obtain the following:

5.4. Proposition. Let R be a unital algebra and Q =R ® (T2 @ T2). Then K is an ideal

Ki1i Ki2 K3 Kus
0 Koo 0 Ko
0 0 K3 Ksg
0 0 0 Ky
(i) each K;; is an ideal of R;

(ii) K:Z'j DK+ K:jj fori<j.

(iii) K14 2 K12 + K13 + Koa + K3a.

of Q if and only if K =

, where
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We recall that if &/ and V and ideals in an algebra A, then [/, V] denotes the linear span
of the set of commutators uv — vu; for u € Y and v € V.

5.5. Lemma. Let K C B(H) be an ideal. Then the ideal J generated by [B(H),K] is K
itself.

Proof. Let P be an infinite rank projection with infinite dimensional kernel, and let V'
be a partial isometry such that VV* = P and V*V = (I — P). It follows that VP = 0.

For example, V = [ 8 é ] relative to the decomposition H = PH @ (PH)*, and where

we identify PH with (PH)~,.

Let K € K. Then PK(I — P) = [PK(I — P),(I — P)] € [K,B(H)] € J. Similarly,
(I - P)KP € J. Also PKP = [PKV,V*|P € [K,B(H)|B(H#) C J, and similarly (I —
P)K(I-P)e J. Thus K=PKP+ (I-P)K(I-P)+PK(I-P)+(I-P)KPeJ.

Hence £ C J. The reverse inclusion is clear. O

We shall make use of the following result from [8] about the relationship between Lie
ideals and associative ideals in B(H)

5.6. Theorem. ( [8]). Let L be a Lie ideal in C B(H). Then there ezists an associative
ideal J such that

[B(H”),J]CLCJ+CI.

Next, we make an observation regarding the relationship between £ and J.

5.7. Lemma. Let L be a Lie ideal in B(H) and let J be an associative ideal that satisfies
the inclusions in Theorem 5.6. Then [B(H), L] = [B(H), J].

Proof. First note that [B(H), L] C [B(H),J + CI| = [B(H), J].
For the reverse inclusion, first recall that B(#) is linearly spanned by its projections [7].
Thus it suffices to show that if P = P? € B(H) and J € J, then [P, J] € [B(#), £L]. However

[P, J] =[P, [P, [P, J]]l.

Now [P,J] € J, and so [P,[P,J]] € [B(#),J] C L. Thus [P,[P,[P,J]]] € [B(H),L], i.e.,
[P, J] € [B(H), L] as required. O

With the results we already have, we are now in a position to prove the uniqueness of
the associative ideal that corresponds to a Lie ideal in B(#). Although we shall make no
use of this in the foregoing, it may be of independent interest.

5.8. Corollary. If L is a Lie ideal in B(H), then the corresponding associative ideal in
Theorem 5.6 is uniquely determined by L.

Proof. This follows immediately from 5.5 and 5.7.
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5.9. Lemma. Suppose R is a unital algebra and Q = R ® To. Let L C Q be a Lie ideal.
For1<i<j<2let Mj={AceR:AQE;; € (I® E;)L(I® Ejj)}, i.e., M;j is the set
of all elements of R that appear as entry in the (i,7) position of some element in L. Then
(a) Mi11 and Mo are Lie ideals of R and
[R, Mi1] Mz ]
O [R, M22] )

(b) M1 is an ideal of R, and My O [R, Mi1] + [R, Ma2].

co|

. . L1 L2 [ I 0 Ll L2
Proof. (a) First observe that if [ 0 L ] € L, then [ 0 0 ] ,[ 0 L ”
0 Lo Ly 0
[ 0 0 ] € L. Tt follows that [ 0 L ] € L, and hence
X 0 Ly 0 [ X, L1) 0]
Ho o]’[o m”‘[ N
. Similarly

0 [Y, L4
Thus M11 and Moy are Lie ideals of R, and

e

[R,Mu1] My
D)
£2 [ 0 [R, Ma22] |’
as claimed.
0T
(b) If T € M2, then by part (a) , we have [ 0 0 ] € L. Then
X o0]JoT 0 0]_[0 X717 ] _,
0 0’0 O 10 Y 10 0

for all X,Y € R. Hence M5 is an ideal of R.

Finally, if X € [R, Mu] and ¥ € [R, Mas], then [%( 8] [8 3] € £ by (), and
hence
X 0 0 I 0 X 0 0 0 I 0Y
Lo ol lool]-[0 o = [[8 v ][0 all-[0 0]
Thus X, Y € M3, completing the proof. |

5.10. Proposition. Let £ be a Lie ideal in Q := B(H)®7Ta. Then there ezxists an assocative
ideal K of Q such that

(1) [K,Q] € L C K+ Dk,
where Dy is the subspace of I ® Do, the diagonal of Q, determined by :
(1) if [ 8 B((;H) ] C K, then Dx = I ® Dy; otherwise Dx = CI.

Conversely, if K is an ideal of Q and L is a subspace of Q satisfying (1), then L is a Lie
1deal.
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Proof. Let M;; be as in the preceding lemma. Thus M;; and Mjo are Lie ideals of
B(#) and

[B(H), M11] Mis
‘9[ 0 [3(%),%2]]'

By [8], we can find ideals 11 and Koz of B(H) so that
[B(H),Kii] CM;;CK;+CI, i=1,2.
Furthermore, by Lemma 5.7, [B(H), My] = [B(H), Ky, i = 1,2. Thus

o [ [B(H), K11] M ]
- 0 [B(H),ICQQ] ’
Let K = ICOM /1?2122 . Then by Lemma 5.9 (b), Mjy is an ideal of B(#) and M2 D

[B(H), M11] + [B(H), M2o] = [B(H), K11] + [B(H), Ka2]-
Since M5 is an ideal, then by Lemma 5.5, we have that M3 O K17 + K92, and so
Lemma 5.3(a) implies that K is an ideal of Q. By Lemma 5.3(b),

[B(H), K]l Mz ]
K= [ 0 (B, K] | €5

It is now clear that £ C K + I ® Dy. We will show that if Mq9 # B(H), then £L C K + CI.

If Myq # B(H), then M3 is included in the ideal of compact operators and so must K11

and Koz, as they are included in M15. Now suppose that Kitond M ] €L

with Ky € K11 and K3y € Koo, M € M9, and a1, as € C. Then

0 Ky + asl

0 (aQ—al)I—HKl—Kz]:HIﬁ—ertlI 0 ]’[0 1”65,

0 0 0 K2 + (,YQI 0 0
Therefore (a7 — az)I is compact, and so a; = asy.
The converse is straightforward. O

For the following Theorem, recall that we let F;; denote the standard matrix units of 7,
1 <i<j <2, and we let Fj; denote the standard matrix units of 7, ® 72. We identify 7,
with a subspace of 72 ® T2 by identifying the matrix unit Eqq with (Fi1 + Fag), Ea with
Fs3 + Fyy, and E1o with Fi3 + Foy.

5.11. Theorem. Let Q = B(H)® T2, and R=B(H)Q (T2 ®T3) ~ Q®T2. Let LC R be
a Lie ideal. Then there exists an associative ideal K of R such that

(0) [K,R] C L C K+ D,

where Dx is a subspace of C {221:1 a;l @ Fy; : o € C,1 <14 <4}, the diagonal of R, and
1s determined by the condition:

(¢) a; = aj if Kij £ B(H) for 1 <i<j<4, (4,7) #(2,3),

where K;; are as in Propositon 5.4.
Conwversely, if K is an associative ideal of R and L is a linear manifold in R satisfying
the above condition §, then L is a Lie ideal in R.
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Proof. Let W; =1Q Ey, 1= 1,2. For all 4,3, let Mij = {X €EQ:X® Eij € W,EWJ}
By Lemma 5.9, M1; and Mgy are Lie ideals of Q and

[Q, Mi1] Mg ]
0 [Q, Ma] |

Since M1 is a Lie ideal of Q = B(H) ® T2, then by Lemma 5.9, we can find ideals K11, K12

and Koy of B(#H) so that J; = [ ICOM EZ ] is an ideal of Q such that

co|

2
(71,9l S M1t C i+ eul @ Fii},

i=1
where a; = g if K19 # B(H).

Similarly, there exist ideals K33, K34 and K44 of B(#) so that the ideal Jo = [

Kaz Kaa
0 Ku

in Q satisfies

4
(72, Q] € M1t € o +{D)_ eul @ Fii},
=3
where a3 = ay if K34 # B(H).

Let K = [ %1 /Vijm ] . Then K is an ideal in R and
2

[Q,Mll] — |: [ (’Hz), Icll] [8(7’.81’2}C22] :| = [Q, «71]
)

B
[Q, Mao] = [ [B(HO, K33 [B(?I-LC)?:4IC44] ] =9, o).

[Qa jl] Mia
0 [Q’ jQ]

It is clear that £ C K + {Z?Zl a; I ® Fj; : a; € C;1 <4 < 4}. A calculation similar to
that in the previous Proposition shows that (#) holds.
Once again, the converse implication is a straightforward calculation. O

Thus £3 | |-

6. TRIANGULAR UHF ALGEBRAS.

6.1. Suppose that {p,} is an increasing sequence of positive integers such that for each
n > 1, py|pns1. For each such n, consider a C*-algebra A, that is star-isomorphic to to
M, and a *-homomorphisms ¢, : A, — A, ;. The C*-algebra inductive limit A of the
system {(A,, ¢,)} is called a uniformly hyperfinite or UHF algebra. Alternatively, A is a
UHF algebra if there exists an increasing sequence {A;, } of full matrix algebras whose union
is dense in A.

Let ® be a maximal abelian self-adjoint subalgebra (i.e. a masa) of a UHF algebra A,
and let C be any subset of A. We define the normalizer of ® in C as the set

No(C) = {w € C|w is a partial isometry, wDw* C D, w*Dw C D}.

D is said to be a canonical masa if there exists an increasing sequence {A;, } of full matrix
algebras whose union is dense in A such that ©,, := DNA,, is a masa in A, and Np,_ (A,) C
No, 1 (Any1) for all n > 1.
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Recall that a triangular UHF algebra is a closed subalgebra Q of a UHF algebra A such
that @ N @* is a canonical masa in A. Triangular UHF algebras will be called TUHF
algebras for short.

6.2. Definition. A TUHF algebra Q is said to be strongly mazimal in factors if it can be
written as the Banach algebra direct limit of a system

(1) 0308089,

where Q,, is isometrically isomorphic to some full upper triangular matrix algebra 7,, and
©n * Qn = Qpy1 is an embedding, i.e. the restriction of a C*-isomorphism, so that the
extension of ¢, carries N, (A,) into Np, ., (Ani1).

We refer to [21] and [19] for general facts about such algebras. In particular, it can be
shown that Q + O* = A.

As with UHF algebras, we may identify Q, ~ 7,, with its image in A, and thus view Q
as the closure in A of the union of the increasing sequence {7, }.

6.3. Proposition. Suppose X = [z;;] € Ty, is invertible and z;; = 1 for all 1 < i < n.
Then X is a product of unipotent of order 2 in T,,.

Proof. We argue by induction on n. If n = 2, then X is already a unipotent of order 2, so
there is nothing to prove. Suppose next that the result holds for n < k. Let X = [z;5] € Ti41

(1) 1é—],whereYEMlk and Z € T, with

1 vz ! 10
x=[o " 1o 2]

The first matrix on the right-hand side of the equation is clearly unipotent of order two,
while the induction step guarantees that Z, and hence the second matrix on the right-hand
side of the equation is a product of unipotents of order two. This completes the induction
step and proves the Proposition. O

with z;; = 1 for all . We can then write X = [
z;; = 1 for all 4. Then

We note that the above condition is also necessary for X to be a product of unipotents.

6.4. Theorem. Let Q be a TUHF algebra that is strongly mazimal in factors and let L
be a norm-closed subspace of Q. The following are equivalent:

(a) L is a Lie ideal;

(b) L is invariant under conjugation by invertible elements of Q;

Proof. In view of Theorem 1.4, we need only prove that (a) implies (b) Suppose that £
is a closed Lie ideal in Q. By [13], we can find a closed, associative diagonal-disjoint ideal
K and a C*-subalgebra Dy of the diagonal such that X C L C K + Dx Thus if M € L,
we can find unique elements K € K and D € Dx so that M = D + K. If X € Q™', then
X IMX =X"1DX + X“1KX. Since K is an ideal, it is obvious that X 1K X € K C L,
and so it suffices to show that X 'DX € £ for all X € @~1.

In fact, since £ is closed, it suffices to prove that X 'DX € £ whenever X € Use, 9, L
which is dense in Q~!. Suppose therefore that X = [z;;] € Oy I~ 77;1 for some n > 1.

Write X = FY, where F' = diag{z;}/~; and Y = [y;;] € 7;;1 with y;; = 1 for all 5. Then
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X 'DX =Y 'F7IDFY = Y~'DY, as D and F lie in the diagonal of @ and this is an
abelian algebra.
In general, if T'€ £ and W = I + N, with N nilpotent of order 2, then

W' TW =(I -~ N)TI+N)=T+ (TN — NT) - NTN
=T +[T,N] + %[[T, N1, N].

Since [T, N] and [[T, N],N] are in £ by virtue of the fact that £ is a Lie ideal, it follows
that W1TW € L.
By Proposition 6.3, we have that Y = W1Wy--- W, a product of such unipotents of
order 2. Let
Dj=W; ' W 'DW,---W; = W' D; W
The argument of the preceding paragraph shows that D; € £, (1 < j < r). Since D, =
Y ~'DY, we are done. 0
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