LIE IDEALS IN TRIANGULAR OPERATOR ALGEBRAS

T.D. HUDSON!, L. W. MARCOUX?, AND A. R. SOUROUR?

ABSTRACT. We study Lie ideals in two classes of triangular operator algebras: nest algebras
and triangular UHF algebras. Our main results show that if £ is a closed Lie ideal of the
triangular operator algebra A, then there is a closed associative ideal K and a closed subalgebra
D of the diagonal AN A* so that X C £ C K + D.

INTRODUCTION

Let A be an associative complex algebra. Under the Lie multiplication [z,y| = zy — yz, A
becomes a Lie algebra. A Lie ideal in A is a linear manifold £ in A for which [a, k] € £ for
every a € A and k£ € £. In many instances, there is a close connection between the Lie ideal
structure and the associative ideal structure of A. This connection has been investigated for
prime rings in [6], in [3] for B($)) — the set of bounded operators on a Hilbert space £, and
in [10] for certain von Neumann algebras. (See also [9, 4, 11]). In this paper we pursue this
line of investigation for two classes of triangular operator algebras, namely nest algebras and
triangular UHF algebras.

The authors would like to thank Frank A. Zorzitto for many helpful conversations.

1. WEAKLY CLOSED LIE IDEALS IN NEST ALGEBRAS

Recall that a nest N on a Hilbert space §) is a chain of closed subspaces of $) which is closed
under the operations of arbitrary intersections and closed linear spans, and which includes
{0} and $. The nest algebra T (N) is the algebra of all operators on § leaving every member
of N invariant. This is always closed in the weak operator topology. The diagonal D(N)
of a nest algebra 7 (N) is the von Neumann subalgebra T(N) N T(N)*. If E,F € N with
E < F, then F — F is called an interval of the nest. The nonzero minimal intervals are called
atoms. A nest is atomic if the atoms of the nest span $). We refer the reader to [1] for more

information on nest algebras.
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Our main result, Theorem 12, shows that for every weakly closed Lie ideal £ in 7 (N), there
is a corresponding weakly closed associative ideal I and a von Neumann subalgebra Dy of
D(N) such that

KCLCK+Dk.

It may be instructive to illustrate our result in the simplest finite dimensional case. This
particular example may be known, but we have been unable to discover a reference for it.
The set T, of nxn upper triangular matrices is an example of a nest algebra. An elementary
calculation shows that there is a bijective correspondence between the set of associative ideals
in T, and the set of non-decreasing functions f: {0,1,...,n} — {0,1,...,n} satisfying f(j) <
j for all 0 < j < n. This correspondence is given by f < I; := {[a;;] € Th, ‘ aij = 0if i >
f (_7)} We may associate to each associative ideal I of T,, a subalgebra ©; of the diagonal

9 ,, namely
@]:{diag(dl,...,dn) E@n|dk:dk+1 ifak,kH:OV[aij] GI, Vlékgn—l}

Theorem 1. If £ is a Lie ideal of T,,, then the intersection KC of £ with the space of strictly

upper triangular matrices is an associative ideal of T, satisfying I C £ C K + D.

It is worth pointing out that in this example, the converse also holds, namely: if IC is any
associative ideal of T,,, and £ is any linear manifold satisfying ' C £ C K 4 Dy, then £ is a
Lie ideal of T,,.

For the general case, we shall need the following characterization of the weakly closed

associative ideals of nest algebras as obtained in [2].

Theorem 2 (Erdos-Power). If T is a weakly closed ideal of T(N'), then T has the form
I={XeB(®H)|(I-E)XE=0 VYEeN},

where E — E is a left order continuous order homomorphism of N into N such that E <F
for each E € N.

Throughout this section, let E denote the image of E under the order homomorphism of
N into itself corresponding to the weakly closed ideal Z.

The following lemma, while elementary, will also prove useful.
Lemma 3. Let T be a weakly closed ideal of T(N') and X € T(N). Then

I={XeTW)|(E-E)X(E-E)=0 forall E€NY}.



LIE IDEALS IN TRIANGULAR OPERATOR ALGEBRAS 3

Proof. First assume that (E — E)X(E — E) = 0 for every E € N. Let E € . Since E < E
and XF = EXFE, we have

(I-E)XE = (I-E)EXE— (I — E)EXE
= (I-E)EX(E—E)
= (E-E)X(E-E)=0.

Since E € N was arbitrary, by Theorem 2 it follows that X € T.
Conversely, if X € Z, then 0= (I — E)XE = (E — E)X(E — E) for all E € \. 0

Let £ be a weak operator topology (weakly) closed Lie ideal of 7 (N). Define
K :=span"{PT(I-P)|T € £&PeN},

where S denotes the weak operator topology closure of S, S C B($).
We now show that K (= K(£)) is in fact a weakly closed associative ideal of T (N) satisfying
KCLECK+DWN).

Lemma 4. Let £ be a weakly closed Lie ideal in T(N) and K be defined as above. Then
K =span"{T € £|3P € N'with T = PT(I - P)}.

Proof. We will show that G; = G5, where G := {PT(I — P) |T e L, P € N} and Gy :=
{T € £|3P € N with T = PT(I — P)}. It is obvious that G, C G,. If PT(I — P) € G4,
where T' € £, then since T' € T(N), we have PT(I — P) = PT — PTP = PT — TP. Thus,
PT(I — P) € £, and since P(PT(I — P))(I — P) = PT(I — P) € G, G1 C Gs. O

Proposition 5. Let £ be a weakly closed Lie ideal of T(N') and K be as defined above. Then
K is a weakly closed associative ideal of T(N') contained in L.

Proof. Clearly K is a weakly closed subspace of T(N). Lemma 4 proves that £ C £. Let
AeTWN). If X € £and X = PX(I — P) for some P € N, then

[PAP, X]| = (PAP)X — PX(I — P)(PAP) = APX = AX .
Since X € £ and PAP € T(N), we have AX = [PAP, X] € £. Moreover,
PAX(I — P)=PAPX(I-P)=APX(I - P) = AX

so AX € K. Since K is closed under weak spans, we see that K is a weakly closed left ideal
of T(N). Similarly, by considering [X, (I — P)A(I — P)], we conclude that K is a right ideal
of T(N). O
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Throughout the paper, we use K to denote the weakly closed associative ideal corresponding
to the weakly closed Lie ideal £, as constructed above. We now require a couple of technical

lemmas.

Lemma 6. Let £ be a weakly closed Lie ideal of T(N') and K the corresponding associative
ideal. Suppose that E,F € N with E < F < E. If[F — E, X] € K for some X € T(N), then
(F—E)X(E—-F)=0.

Proof. Since [F — E, X] € K, it follows from Theorem 2 that (I — E)[F — E, X]E = 0. Since
(F—E)E-F)=0,

(F-E)X(E-F) = (F-E)X(E-F)— (F—-E)X(F—-E)(E-F)
= (F—E)F-E,X|(E—-F)
— (F—E)I-E)F—-E,X|E(E—F)=0,
as desired. 0

For a nest algebra T (N), there is an expectation (generally non-unique) from 7 (N') onto
the diagonal D(N) (see [1, p. 90]).

Lemma 7. Let £ be a weakly closed Lie ideal of T(N') and K the corresponding associative
ideal. Let m: T(N) — D(N) be an expectation onto D(N), E € N, and X € T(N). If
[F—E,X —n(X)] € K for every E < F < E, F € N, then (E—E)(X—W(X))(E—E) = 0.

Proof. Let P = E — E and X, = X — n(X). For F € N, let M(F) = FPX,P(I — F).
If F < E, then M(F) = (F — F)X,P(I — F) = 0, and similarly, if F > E, we have
M(F) = (E — E)X,((E — E) — (E — E)) = 0. If either F = E or F = E, then clearly
M(F)=0. If E < F < E, then by Lemma 6 we have M (F) = (F — E)X,(E — F) = 0.

It now follows that PX,P € T(N)*. But since PX,P also belongs to 7(N), we have
PX,P € D(N). Since 7 is an expectation onto D (N), we see that

PX,P =nm(PX,P) = Pr(X-n(X)))P
= P(n(X) - n(n(X)))P
= P(n(X)-n(X))P=0,

as desired. 0

Proposition 8. Let £ be a weakly closed Lie ideal of T(N) and K the corresponding asso-
ciative ideal. Then £ C K +D(N).
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Proof. Suppose that K € £. Let 7 be any expectation onto D(N). We show that K, :=
K — 7(K) belongs to K, so that K = K; + 7(K) € K + D(N).

Fix E€N. Let F € N with E < F < E, and set Rp = F — E and Yy = [Rp, K,]. Since
n(K) € N', Yr = [Rp, K] — [Rp,n(K)| = [Rr, K] € £.

We now show that Yz € K. Since (F — E)KF = (F — E)K(F — E) = (I — E)K(F — E),
then

[Re, K] = (F-E)K-K(F-E) (1)
= (F-E)K(I-F)—EK(F—-E)+(F—-E)KF—(I-E)K(F—F)
= (F-E)K(I-F)—-EK(F—F)

We now show that each of (F — E)K (I — F) and EK(F — E) lie in K, so that [Rp, K] € K.
Recall that since K € £, we have [Rp, K] € £. By (1), we see that [E, [Rp,K]] = ~EK(F —
E). But since [Ry, K] belongs to £, we also have [E, [Rr,K]] € £. But

E[E,[Rp,K]|(I - E) = E(-EK(F-E))(I-E)
= —FEK(F-E)
= [Ea [RF: K” )
and so [E, [Rr, K]| € K. Similarly, again by (1), [F,[Rp, K]| = (F — E)K(I - F) € & and
SO
F[F,[Rp, KI)(I - F) = F((F-E)K(I~F){~F)
(F — E)K(I — F)
= [Fa RF; K]]
It follows that [F,[Rr, K]] € K. Hence, Y = [Rp, K] = [F,[Rr, K]] + [E, [Rr, K]] € K.
Thus, for any F € N satisfying E < F < E, we have shown that [F — E, K — 7(K)] € K.

So by Lemma 7, we have (E — E)K,(E — E) = 0. As E € N was arbitrary, by Lemma 3,
K, e K. O

Recall that given a weakly closed ideal Z of T(N), E denotes the image of F € N under

the order homomorphism corresponding to Z given by Theorem 2.

Definition. Let Z be a weakly closed associative ideal of T(N). We define

D7 ={D e DWN)| for all E € N satisfying E < E_ we have
(E— E)D(E — E) = \g(E — E) for some A\ € C} .
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Clearly any weakly closed associative ideal Z is a weakly closed Lie ideal. It will follow
from Theorem 12 that ©7 corresponds to the maximal diagonal subalgebra of ®, that we

can “add” to Z to produce a Lie ideal £ whose canonically associated ideal K is the original
ideal Z.

Proposition 9. If 7 is a weakly closed ideal of T(N), then Dz is a von Neumann algebra.
Proof. Given E < F in N, set P = F — E and define

Ap ={T € B(§)| PTP = AP for some Ar € C} .
Clearly each Ap is a von Neumann algebra, and so

¢ =(\{Ap|P=E—Efor E€ N with E < E_}

is also a von Neumann algebra. Since D7 = D(N) N @, it follows that Dz is a von Neumann

algebra. 0

Lemma 10. Let Z be a weakly closed associative ideal of the nest algebra T (N) and let Dz

be as above. Define

M :={T e TN)| for all E € N for which E < E_ we have
(E - E)T(E — E’) =Ag(E — E) for some A € C} .

Then I 4+ D7 = M. Consequently, T + D7 is weakly closed.

Proof. Write T € T+ ®7 as K + D, where K € 7 and D € ©7. Suppose that E < E_.
Then (E — E)YK(E —E) = (I — E)KE = 0 and (E — E)D(E — E) = Ag(E — E). Thus,
T=D+KeM,andsoZ+ D7 C M.

Conversely, suppose that T € M. Let 7 be any expectation of B(f)) onto D(N). Let
D=xn(T)and K =T —n(T); clearly T = D + K.

We claim that K € Z and D € D7. To see this, let £ € N, and so

t

(E-B)K(E-F) = (E—B)(T - (D)(E - )
= (E-BYT(E-B) - (B Byn(T)(E - B) )

~E)T(E~ E)—7((E— E)T(E - E))

If E=E_, then (E — E_)T(E — E_) belongs to the atomic part of D(N), and so by (2),

(E—E)K(E—E)=(E—E)T(E—E_.)—(E—E_)T(E—E_)=0.
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If £ < E_, then since T € M and by (2),
(E-E)K(E—FE)=XMg(E—E)—n(\g(E - E)) =0.

Finally, if E = E, then since K € T(N), (I — E)KE = (I—E)KE = 0. Thus (E—E)K(E —
E)=0for all E, and so K € T.

As in the proof of Proposition 9, M is clearly a subspace of T (N). Since T, K € M and
D € Dz, we have that D =T — K € MNDN) =Dz. Thus, T = K+ D € T+ D7 and so

M C T+97. Since M is easily seen to be weakly closed, it follows that Z+ 27 is as well. [

Proposition 11. If T is a weakly closed ideal of T(N), then T + Dz is a weakly closed Lie
ideal of T(N).

Proof. By Lemma 10, Z + D7 is weakly closed. To prove that it is a Lie ideal, let T € T (N)
and J€ T +D7. Thenif E€ N and E < E_,

(E-E)T,J(E—E) = [(E-E)T(E—E),(E—-E)J(E—E)]

By Lemma 10, [T, J] € T + Dz, and so Z + Dz is a weakly closed Lie ideal of T (N). O
We are now in a position to prove our main result.

Theorem 12. Let £ be a weakly closed Lie ideal of T(N') and K the associative ideal corre-
sponding to £. Then K C £ C K + D.

Proof. Proposition 5 proves the first containment. For the second, let L € £. By Proposition 8,
£ CK+DW),sowrite L =K+ D for some K € K and D € D(N). Let E € N and
suppose that E < E_. Consider any F € N with E < F < E and any T € T(N) with
T = (F—E)T(E—F). Then since £ is a Lie ideal, we have [T, L] € &, i.e., [T, K]+[T, D] € £.
Since K € K C £, we have [T, K| € £ and so [T, D] € £ C K+ D(N).

Now if K1 + D; € K+ D(N) and E, F are as above, then since D; € N, we have

(F—E)Ki+D)(E~F) = (F—E)K\(E—F)+(F—E)D\(E—F)
= (F—E){I - E)K\,E(E - F)
= 0.
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Hence, since [T, D] € K + D (N), it follows that (F — E)[T, D](E — F) = 0. Thus

0 = (F-E)[I,D|(E-F)
= (F—E)TD(E—-F)— (F - E)DT(E - F)
= TD(E—F)—(F-E)DT
= T((E—F)D(E-TF)) - ((F - E)D(F - E))T,

and so
T((E - F)D(E - F)) = ((F - E)D(F - E))T
for all T € B(§) for which T = (F — E)T(E — F). Hence, we conclude that
D(F-E)=AM(F—E) and  D(E—F)=Mg(E—-F)

for some A\ € C. But this is true for all F satisifying E<F< E. and so this implies that
D(E — E) = Ag(E — E). Since this in turn is true for all E € A with E < E_, we conclude
that D € Dx. Thus, L € K 4+ Dy, i.e., L C K+ D. O

Remark 1. Let K be a weakly closed associative ideal of T(N). It is not true that every
weakly closed subspace S of T (N) satisfying  C S C K+ Dy is a Lie ideal. Indeed, consider
the trivial nest {0, $} for any Hilbert space of dimension larger than 1 and K = {0}. In this
case Dx = B(9), and the span of any nontrivial projection is a counterexample to the above

statement.

Remark 2. The compression of a Lie ideal £ of T(N) to any interval (in particular to an
atom) must also be a Lie ideal. Since it must also be weakly closed, the compression of £
to an atom must be one of {0}, CI, or sl, (the elements of trace zero) if the atom is finite
dimensional, or B($)) for the (finite or infinite dimensional) atom §) (see [3]). The following
example shows that the converse is false. That is, if K is a weakly closed associative ideal and
S a weakly closed subspace with X C S C K + Dy and so that the compression of S to every
atom in N is a Lie ideal, it does not follow that S itself is Lie ideal.

Example 13. There exists a weakly closed subspace S of T (N) satisfying:

(i) T C S C T+ D7 for some weakly closed associative ideal Z;

(ii) the restriction of S to every atom of N is a Lie ideal,

but S itself is not a Lie ideal.
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Let $§ = C*, N' = {{0},span{e;, e}, 9}, and T = PT (N)(I—P), where P is the orthogonal

projection onto span{e;,es}. Thus,

% ok ok ok 0 0 x =«
00
TWN) = e and 7= * ,
0 0 * =* 00
0 0 * =* 00
and moreover, D7 = My ® My and Z + D7 = T (N). Let
X A
8:{ ‘X,A€M2}a
X
sothat Z C S CZ + 37 and S is weakly closed. Then
0 00O 3000
1 000 03 00
S = €S and T = eTWN),
0 00O 0 0 01
0010 0 00O
but since
00 0 O
00 0 O
S, T| = S,
| ] 00 -1 0 ¢
00 0 1
we find that S is not a Lie ideal. O

For every associative ideal Z, there exists a Lie ideal Z; such that every linear manifold

between Z and Z7 is a Lie ideal.

Definition. Let Z be an associative ideal of 7 (N'). Define

I;={XeTW)|[AX]eT VAe TWN)}.

Note that Z is simply the lifting of the centre of 7(N')/Z, and that it clearly has the above
mentioned property. Example 13 shows that, in general, Z + ®7 need not be contained in Z.
Recall that a nest N is called mazimal if all of its atoms have dimension one. In particular,

it follows that a continuous nest is maximal. In contrast to the previous example, we have:

Proposition 14. Let N be a nest and T a weakly closed associative ideal of T (N'). Then
(i) I, CZT+ 2Dz, and
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(i) of N is mazimal, then T; = T + Dz; in particular, every linear manifold between T
and I + D1 is a Lie ideal.

Proof. For (i), let R € T, and E € N with E < E_. Since [R,T] € T for every T € T (N,
then by Lemma 3

0= (FE - E)[R,T)(E—-E)=[(E-E)R(E—-E),(E—ET(E - E)].

Thus, (E — E)R(E — E) lies in the commutant of the compression of T(N) to (E — E)$,
which is itself a nest algebra. Since the commutant of a nest algebra is well-known to be
trivial [1, Corollary 19.5], we find that (E — E)R(E — E) = Ag(E — E) for some Ag € C.
Thus R € T+ 97.

To prove (ii), suppose N is maximal and let L € T+ 7. Then L = K + D for some K € T
and D € D7. Let T € T(N), so [T, L] = [T, K|+ [T, D]. Since K € T and Z is an ideal, we
have [T, K] € Z. Thus it suffices to show that [T, D] € T.

First observe that for all E € N/, we have (E — E)D(E — E) = Ag(E — E) for some Az € C.
Indeed, this follows from the definition of D7 if E < E_, and if E= E_, then F — E is one

dimensional by virtue of the maximality of the nest. Therefore,

(E—-E)[T,DI(E—~E) = [(E—FE)T(E—E),(E—E)D(E - E)]

= [(E-E)T(E - E),As(E - E)] = 0.
Thus by Lemma 3, [T, D] € Z and so [T, L] € Z. This proves that L € Z,i.e., 7497 CZ,;. O

In the finite dimensional case of Theorem 1, notice that the associative ideal K corre-
sponding to a Lie ideal £ of T, is diagonal disjoint. That is, if 7 is the projection onto the
diagonal, then 7(K) = 0 for all K € K. A similar decomposition of a Lie ideal into the direct
sum of its diagonal and off-diagonal parts holds for triangular UHF algebras (see Section 2).
The situation for nest algebras depends on the nature of the nest, as the following results
demonstrate.

Recall that if z,y € £, then the rank-one operator z ® y* is defined by = ® y*(z) = (z,y)z,
zZE€ 9.

Proposition 15. Let N be the Volterra nest and let m be any expectation of T(N') onto the
diagonal D(N'). Then

{x—w(m)|x€7'(./\/')}w:7'(./\/).

Proof. Let U = {z —7(z) |z € T} . If 2 ®y* € T(N), then there is some N € N so
that x € N and y € N*. Thus 7(z ® y*) = 0, and so 2 ® y* — 7(z ® y*) = x ® y*. This shows
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that U contains all rank-one operators in 7 (N). It follows that U contains all finite ranks in
T (N), and since U is weakly closed, we have U = T (N). O

From this we see that if £ = 7 (N), where NV is the Volterra nest, then the corresponding as-

sociative ideal K is T(N) = £. Since Dy is then equal to D (N), no direct sum decomposition
of £ is possible (compare with Proposition 18).
Example 16. Consider a nest A/. The atomic part of the diagonal of NV is the von Neumann
subalgebra ©, = Y ®B(H,), where the direct sum is taken over the set of atoms H, of the
nest. Let 7, denote the homomorphism from 7 (A) onto the atomic part of the diagonal. If
£ is a Lie ideal, it is in general false that 7,(L) € £ for all L € £. Indeed, recall that given
a nest A/, there is an order preserving homeomorphism of A/ onto a compact subset of [0, 1],
which allows one to talk about an order type of a nest [1, Theorem 2.13]. As such we may
consider a nest N of order type [0,3] U {3} U [2,1]. Let £ = CI, and notice that X = {0}.
Then I € £ yet 1,([) =00 10 ¢ L. O

One may also ask to what extent the decomposition in Theorem 12 is unique. We have the

following result.

Proposition 17. Suppose £ is a weakly closed Lie ideal of T(N) and K1, Ky are two weakly
closed associative ideals of T(N') such that

If w is any expectation onto D(N), then K1 Nkerm = Ky Nker 7.

Proof. Using Theorem 2, let K be defined by the function F +— E and K, be defined by the
function E — E. Assume that K; N ker # Ko Nker . Without loss of generality, there
exists some T’ € K, \ K; with T € ker 7. Thus there is E € A such that (I — E)TE = 0 but
(I - E)TE #0. Thus E < E and since K, is an ideal, 0 # (E — E)TE € K.

If £ < E, then (E — E)TE has zero n-diagonal, but (E — E)TE ¢ K1, and so (E — E)TE ¢
K1+ D(N), a contradiction since (E — E)TE € Ky C £ C K1 +D(N).

If E = E, then either (i) E < E_ or (i) E = E_. If (i) holds, then there is some N € A/
with E < N < E so that (N — E)T(E — N) # 0. Again, this has zero diagonal, but it does
not belong to Ky. Thus, (N — E)T(E — N) ¢ K1 +®(N), a contradiction as above.

Finally, if (ii) holds, then 0 # (E — EYTE = (E — E_)T(E — E_) € ®(N). But

(E-E)T(E—E.) = n((E—E_)T(E—E_))
= (E-E_)n(T)(E-E-)
= 0,
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a contradiction. Thus, Iy Nkerm = Iy N ker 7. O

If AV is an atomic nest, there is a unique expectation of 7(N) onto D(N) [1, p. 90]. The
final result of this section shows that when the underlying nest is atomic, we can obtain a
decomposition of a weakly closed Lie ideal of the nest algebra as the direct sum of its diagonal

and off-diagonal parts, paralleling the situation in the finite dimensional case.

Proposition 18. Let N be an atomic nest, £ a weakly closed Lie ideal of T(N), and K the
weakly closed associative ideal of T (N') corresponding to £. If m denotes the unique expectation
of T(N) onto the diagonal D(N'), then K = {z — 7(z) |z € S}w . In particular, £ = K&m(L).

Proof. Set § = {z — 7 () ‘ x € S}W . To prove the proposition, it suffices to show that J is a
weakly closed associative ideal of 7T (N') such that J C £ C J+ D(N). Indeed, in this case
Proposition 17 gives that K Nkerm = J N ker 7. But since X Nkerm = K and JNker7m = J,
K = J, completing the proof.

To show that J has the desired properties, let F be a finite subnest of N and let {E;};
denote the intervals of F. If G is any subnest of N’ and J € T(G), then set Lg(J) =
S Ei 1 J(E; — Ei_y).

We first show that if J € J and A € T(N), then ALx(J) € £. Let L = Lx(J). If i < j,
then E;LE; = —[E;,[E;, L]], and since J C £, we conclude that E;LE; € £. Thus, for
i < j <k, we have EyAE;LE; = |EyAE;, E;LE,) € €. If i > j, then E,LE; = 0, and if k > 7,
then By AE; = 0. As such, E,AE;LE; € £ for all ¢, j, and k. Summing over all such 1, j, k,
we obtain that AL = ALx(J) € £.

If X € £, then 2X — Y, [E;, [E;, X]] € £. But

2X - Y [E;,[EB;, X]] = 2X-) EX - EXE;,— EXE; + XE;

= 2) EXE;
= 271'_7:(X) s

where 7z is the projection onto D(F). It follows that 7x(X) belongs to £. As £ is weakly
closed, it is also SOT-closed. Since N is atomic, it follows from [1, Proposition 4.4], that
7(X) = sor-limz 7x(X) € £. Thus §J C £.

We claim that J = sor-limz L. Now 7(J) = sor-limg 7x(J) [1, Proposition 4.4], and thus
by [1, Proposition 4.5], Ly(J) = sor-limz L = J — w(J). Let z, y € $, for any atom ), of
N. By definition, we can find a weakly convergent net {J,} C £ such that

<7m(J)z,y >=lim < (Jo — 7(Ja))z,y >=0.
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Thus 7(J) =0, and so J = J — 7(J), proving our claim.
It is now immediate from the above that if A € T(N), then AJ = sor-limz AL. But for
all 7/ > F, Ly (ALF(J)) = AL#(J), so

AJ = sor-lim AL = sor-1i -li 1 J
J = sor im SOT }:r,n(SOT 1jr__an (ALx(J))) €3,

and so J is an ideal. O

2. NORM-CLOSED LIE IDEALS IN TRIANGULAR UHF ALGEBRAS

Let {p,} be an increasing sequence of positive integers such that for each n > 1, p,|pni1-
Consider a sequence of C*-algebras A, ~* M, and s-homorphisms ¢,, : A, — A,;;. The
C*-algebra inductive limit A of the system {(A,,, #,)} is called a uniformly hyperfinite or UHF
algebra. Alternatively, A is a UHF algebra if there exists an increasing sequence {A,, },, of full
matrix algebras whose union is dense in A.

Let © be a maximal abelian self-adjoint subalgebra (i.e. a masa) of a UHF algebra A, and
let C be any subset of A. The normalizer of ® in C is the set

Np(C) = {w eC | w is a partial isometry, wDw* C D, w*Dw C 33}

D is said to be a canonical masa if there exists an increasing sequence {A, }, of full matrix
algebras whose union is dense in A such that ©, =D NA, is amasain A,, ® = J,D,, and
No, (A,) C Ny, (Ayq) for all n > 1.

Definition. A triangular UHF (TUHF) algebra Q is the Banach algebra direct limit of a

System
QBB (3)

where Q,, is isometrically isomorphic to some full upper triangular matrix algebra T),, and
On  Qp — Qpi1 is an embedding, i.e. the restriction of a C*-isomorphism, so that the

extension of ¢, carries Ny, (Ay) into Np, ., (Ax ).

We denote the direct limit of the system (3) by lim(Q,; ¢,), and call it a presentation for
the algebra. For k < n, let ¢, : Qr — Q, be the c;nposition Op_1 0+ 0 Q.

Our present goal is to investigate the Lie ideal structure of TUHF algebras. We show that to
each norm-closed Lie ideal £ of a triangular UHF algebra Q there corresponds an associative
ideal K and a diagonal C*-algebra ®x such that X C £ C Dy + K.
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We emphasize that, in general, the nest algebra definition of the ideal K is inappropriate
in the limit algebra case. Indeed, let 0,,: Ton — Tont+1 denote the standard embedding, i.e.,
the map defined by 0,(a) = a® a, a € Ton. Set A = li_r)n(TQn,Jn), the 2% standard TUHF
algebra. It is well-known that Lat A is trivial, so the ideal IC obtained via the definition before
Lemma 4 is the zero ideal while clearly any nonzero associative ideal gives a Lie ideal that is
nonzero off the diagonal. Actually, Propositions 18, 21 and 22 suggest that the limit algebra
case closely parallels the atomic nest setting, as one might expect.

Throughout the following, let Q be a triangular UHF algebra with presentation lim(Q,,, ¢n),
where each @, is isometrically isomorphic to T),, for some positive integer p,. L;A denote
the corresponding UHF algebra and ® the canonical masa Q N Q*. We denote by 7 the
contractive projection of A onto ® [13, Proposition 4.1].

We begin with two elementary lemmas. The first is actually Lemma 2.2 of [9], but we

reproduce it here in order to keep the paper as self-contained as possible.

Lemma 19. Let B be a unital complex algebra and suppose that £ is a Lie ideal of My ® B.
Ify=>1 15 1€ ®Uij € £, then e;; @ yi; € £ for each i # j.

Proof. Fix 1 < i < n. Letting ¢ = [y, (e;; ® 1)] and y" = [/, (e;; ® 1)], we have 3 in £ and
hence, y” belongs to £. As such, if 2’ = %(y” —19'), then 2’ € £. A calculation shows that

n

2= (Z €ij ® Yij) — €ii ® Yii -

7j=1
If j # 4, then [Z’, (ejj &® 1)] =€;; QYij € L. O
Lemma 20. Let B be a unital complex algebra and suppose that R is a unital subalgebra of
M, ® B. Suppose that £ is a Lie ideal of R and that {e;; ®1:1 < i< j <n} CR. Finally,
suppose y € L andy = ", > €;j ® yij. Then
(i) e @y € Lif 1 # 7,
(ii) if i <j <m <, then e;m Qyi; € £, and
(ili) if 1 <m < i < j, then en; @ yi; € L.
Proof. Since both e; ®1 and e;; ® 1 belong to R, part (i) follows from the proof of Lemma 19.
By (i), 2 = e;; ® yi;j € £. Now j < m implies that e, ® 1 € R, so that

2, (ejm @ 1)] = [(€i5 ® Yij), (€jm ® 1)] = €im ® yij € £,

proving (ii). To see (iii), observe that by (i), z = e;; ® y;; € £. Since m < 7, we have
emi ® 1 € R, so that

[(emi ® 1)7 Z] = [(emz ® 1)7 (eij ® yij)] =em; QY5 € £.
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g

A closed subspace S of a UHF algebra A is said to be inductive if for every increasing
chain {B,} of full matrix algebras such that A = [J B,, we have S = J>,(SNB,). In

particular, every closed D-bimodule of A is inductive [13, Proposition 4.7].
Proposition 21. Let £ be a closed Lie ideal in Q. If

K={z—n(z)|zeg},
then IC is a closed ©-bimodule of Q contained in £. In particular, IC is inductive.

Proof. Step One: First We show that IC is a subset of £.
We choose a system {e |7 < j,k € N} of matrix units for the triangular UHF algebra Q;

by *-extendibility, this naturally extends to a system of matrix units for the enveloping UHF
algebra A [13]. Recall that for each k& > 1, the map

T A — £3)

a —> Ze ae[k]

)

is a contractive projection and the 7m;’s form a sequence converging pointwise to 7, the contrac-
tive projection of A onto the canonical masa ® associated with these matrix units. Moreover,
7(dyady) = dym(a)dy for all di,dy € ® and a € A [13, Proposition 4.1].

Let £ > 1, so pg divides the supernatural number « of the UHF algebra A. Let B, be a
UHF algebra whose supernatural number is § = «/pg. By Glimm’s Theorem [5, Theorem
1.12] A is *-isomorphic to M, ® By, and so we can think of elements of A as py X p; matrices
over the UHF algebra By. In particular we may do this in such a way so that e[k] is identified
with e(]-“) ®1%®) where {e _, are the standard matrix units for M, , while 1) denotes the
identity element of B;. In general given m € A ~* M,, @By, we write m =) " =1 Z(f) ®mz(f),

with each m( ) ¢ By . Since {e Pr_| is a basis for M,,, this representation of m is unique.

2,7=1
(k] (k)

It will be convenient to introduce the notation mn;; to represent e( )& m;;”. Note, however,

that m;; k] i5 an element, of A, while m(J) lies in By.

Con51der m € £, so that m = [m ] where m[k] = e[k}me Since m € Q, then

k k k
0 m() m§3) mgp)k

k k
0 0 my ... m¥
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(k]

Now, by Lemma 20 each m;; € £ for i # j. Since £ is a linear manifold, we conclude that

m — mp(m) € £ for each k 2 1. Since £ is closed by assumption,

m —m(m) = kllglom_ﬂk( m) € L.

Step Two: Next we show that X is closed.
Suppose y, = z, — 7(x,) € K for n > 1 and that limy, =y € A. Since K C £ and £ is
closed, y € £. Now

m(y) = lirgnw(yn) = li711n7r(xn —(zn)) = lirllnw(xn) — 72(z,) = 0.

In particular, therefore, y € £ and y = y — 7(y), so y € K and the latter is closed.

Step Three: Finally, we show that K is a left ®-module. The proof that it is a right
®-module is similar and is left to the reader.

Temporarily fix 7 > 1. We begin by showing that K is a left ©,, -module. Suppose d € D,
and let z € £. We claim that it suffices to show that dz — 7(dz) € £. Indeed, if this is the
case, then [dz — 7(dz)] — n[dz — 7(dx)] = dx — 7(dz) € K. This in turn says that whenever
z—mn(z) € K, then d(x —7(x)) = de—n(dx) € K, showing that indeed, K is a left ®,, -module.

Let k£ > 1 and consider dx — 7 (dz). As before, we may consider A ~* M,, ® By, where

B, ~* e Ael"). Letting d* = elde*! and x%c] = ez[’;]xeg-];], we obtain that dx — mx(dz) =

[dg )xgj)]1<i<j<pk. To see that this is indeed an element of £, fix 1 < ¢ < pk Then since z €
€, d" € Q, and Lisa Lieideal, we have [, 2] € £ But [d}Y, 2] = -7, di - altldll.
If £ > r, then dgk] = egf]degf] is a scalar, so that
0 ... 0 —dFz 0 o 0]
o0 =dPaP 0 0
k
d¥ zl=10 ... 0 0 dgk)a:gft)ﬂ) . dgk)xglgi
0 0 0 0
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Similarly, since e?[tltc] € Q, we have [eyz], [dgk], x]} € £, and

0 ... 0 dPg® 0 .0 ]
k) (k
o o0 dPe 0 e 0
k
[egt],[dﬂ,x]} =0 ... 0 o dVaf),, ... dVaf})
0 0 0 ... 0
0 ... 0 0 0 ... 0

Thus if ¥ = (1/2)[d", 2] + (1/2) [eg’gl, [dgk},m]], then ¥l € £, and dF = Y . d¥lall.
Since £ is a linear manifold, dz — m(dz) = > 2%, Meg.

Finally, since £ is closed, dz — 7(dx) = lim dz — 7 (dx) € £, which proves that K is a left
®,,-module. More generally, if d € ® and y € K, then dy = lim, d,y, where d, € ®,, . Since
each d,y € K from above and K is closed, dy € K, showing that K is a left ©-module. O

We now show that K is even better than just being a ®-bimodule: it is a diagonal disjoint
associative ideal in Q, and will play the role for TUHF algebras that the ideal defined before

Lemma 4 played for nest algebras.

Proposition 22. Let £ be a closed Lie ideal in the triangular UHF algebra @ = im(Qy, ©n)
and for eachn > 1, let £, = £N Q, for each n > 1. If K is the bimodule {z — W(x‘))|x € £},
then

K = span{ell) € £,]i < j,n € N},

and IC is an associative ideal of Q .

Proof. Set J = spﬁ{e&?] S | i< j,né€ N}. If £ = (0), then no matrix unit eE?] with i < j
belongs to £, and so J = (0).

Now suppose K is nonzero. The previous proposition shows that K is inductive, and so
KN @, is nonzero for all n > ny for some ng. Since KN Q,, C £N Q,,, then £N Q,, is nonzero
for all such n.

First we must show that £, is a Lie ideal in Q,, for all n > ny. To this end, let m € £, and
y € Q. Since m,y € Q,, then [m,y| € Q,, and since m € £, then [m,y] € £. This implies
that [m,y] € £, = £N Q,. Clearly £, is a subspace since both £ and Q,, are, and hence £,
is a Lie ideal of Q,,. For all n > ng, let

3, = spaniel] € £, i < j}.
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By Lemma 20 (i) and (iii), we see that J, is an ideal of Q,. Clearly, [, Jn is dense in J.
We claim that J,+1 N Q, = Jn- Indeed, if x € J,11 N Q,,, then we can write

Pn Pn+1
_ [n] _ [n+1]
T = g zij(n)e;; = E zij(n + 1)e;;
ij=1 ij=1
i< i<

for some z;;(n) and z;;(n + 1) € C. If i < j and z;;(n) # 0, then since z € £N Q,, = £,, and

£, is a Lie ideal of 9, then by Lemma 19 we have x;; (n)egj] € £. Hence, eZ-L] € £,. Thus,
[n]
ij
there exists some kg so that xy, (n + 1) # 0. But this contradicts the fact that z € J,41, and

i < j implies that e;;" € J,. Now if z;,;,(n) # 0 for some iy, then since our maps are unital,
so we have x;;(n) = 0 for all i. This shows that x € J,, and s0 Jp1 N Qn = I, for all n > ny.
Hence, by [12, Proposition 2.5], J is an associative ideal of Q so that JN Q, = J, for all n.
A simple argument using the inductivity of IC shows that J = I, completing the proof. [

Corollary 23. Let £ be a closed Lie ideal in Q. Then K = {x — nw(x) |z € £} is a closed
associative ideal of Q so that K C LC K+ 9.

Proof. Proposition 22 shows that K is an associative ideal of Q, and Proposition 21 shows K
is closed and K C £. If m € £, then m = m —7(m) +7(m) € K+ D, and so we are done. [

The above corollary shows that as in the nest case, to every closed Lie ideal £ of Q there
corresponds a closed associative ideal ICg. We now show that associated to an arbitrary closed,
associative, diagonal-disjoint ideal K of Q is a closed subspace D of the diagonal © which
is maximal with respect to the condition that £(K) = D + K defines a closed Lie ideal of
Q whose diagonal-disjoint ideal K¢y is K. Again, our choice of notation suggests a close
connection between Dy and the algebra described in the definition preceding Proposition 9.
However, the definition of ®x in the present case differs significantly from the nest algebra
definition. Indeed, here D coincides with the intersection of © with the lifting of the centre
of Q/K.

If Q is a triangular UHF algebra, let Q, be the maximal diagonal-disjoint ideal of Q, i.e.,
the strong radical of Q. Clearly we have Q, = spﬁ{ez[-?} €09 | 1< j,n€ N} )

Definition. Given an ideal K of Q, define
Z)K:{dEQHd,q]EICforallqEQs}.
Proposition 24. Let Q be a triangular UHF algebra. If I is a closed diagonal-disjoint ideal

of Q, then D is an abelian C*-algebra. Moreover, Dy is mazrimal in the sense that if P is a
closed subspace of ® so that P+ K s a Lie ideal of Q, then P C Di.
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Proof. Since ®x C ® and both © and K are closed, D is abelian and closed. If A € C and
a,b € Dx, then we have [Aa + b, q] = Aa,q] + [b, q] € K and

[ab, q] = abg — qab = a(bg — gb) + agb — qab = alb, q] + [g,a]b € K

for any ¢ € Q,. This shows that D is a closed abelian subalgebra of 2.
It remains to show that @y is self-adjoint. Suppose that d € Dx, and as in Step Three of

Proposition 21, fix n and write d = diag(d{?,dS), ..., d\",.), where each di'! = elildel. 1t
1 < j, then
[d, el] = dllel?) — el = o @ (a7 — d(.’?)) ek,
since d € Dx. To show that d* is in Dy, we must prove that [d*, e;; ] is in . But
d* = diag(d?", d)", ..., d™ ),
and so [d*, EJ]] = eg’) ®dM - d( ™). Thus it suffices to prove that e(") ® (d™M” d(n )€ K.

Let A be the UHF algebra correspondlng to Q. Asin Proposition 21, we view A as M, ®B,, .
Notice that since d € Dx C D, then (d\” — d;?)) € Dp, , where Z)Bn is the diagonal of B,.
Recall that ¢ < j are fixed. Given k € K, define kz[?] [ }ke € K. Thus, k[ "= e(") ®kz(]"),

where kz(:) belongs to B, . Define
s, = {r € Dg, |e§?®r€l€}.

We now show that Jp, is an ideal of Dp, .

Since K is a closed subspace of Q, it follows that Jp, is a closed subspace of D . In
addition, if b € Dp, and 7 € J,, then el @b € €l1Qel”! C Q and €Y ® r € K. Thus,
(€™ ® b)(eg-l) ®r)= eg-l) ® br € K. Since br € Dg_, then by definition, br € Jp, . This shows
that Jp, is a left ideal of ®p, . Similarly, Jg, is a right ideal. Thus, Jg, is a closed ideal in
the C*-algebra Dy, and so it is self-adjoint.

Since (d — dg-?)) € Dg, and since [d, eE?]] € K if and only if ez(.?) ® (d™ — dg-?)) € K, then
by the definition of Jp we have (d(") d")) € Js, . 1t follows that (" — d\?") € Js,, and
therefore ez(-?) ® (d d(" ) = [d, €l e "l e k.

Since ¢ < 7 was arbitrary, this shows that d* € Dy, and so D is self-adjoint and hence, a
C*-algebra.

Finally, to see the second statement, suppose that P is a closed subspace of ® so that
P + K is a closed Lie ideal. Clearly 7(P + K) = P and K = {z € P+ K|z € ker(m)}.
Let m € P. Since P + K is a Lie ideal, then we have [m,q] € P + K for all ¢ € Q,. But
7([m,q]) = m(mq — gm) = mm(q) — 7(g)m = 0, so that [m,¢] € K. In other words, m € Dy,
and hence P C Dg. O
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The next result is our main theorem in the triangular UHF algebra case.

Theorem 25. Let Q be a triangular UHF algebra and let £ be a closed Lie ideal of Q. There
exists a closed, diagonal-disjoint, associative ideal K and a closed, abelian C*-subalgebra Dy
of the diagonal ® such that

KCLCODe+K.
Moreover, if M is any closed subspace of Dy, then L(M) == M+ K defines a closed Lie ideal

of Q whose corresponding closed, diagonal-disjoint, associative ideal 1s K as well.

Proof. The first statement is a summary of the above theorems. The second is straightforward,
since M + K is contained in the lifting of the centre of Q/K. 4

It remains only to obtain a better description of the diagonal part ®x associated with a
given closed, diagonal-disjoint, associative ideal . The following proposition does exactly
this for an important class of triangular UHF algebras in the case where the algebra Dy is
known to be inductive. It is an open question to decide whether for all closed ideals K, the
corresponding Dy must be inductive.

A triangular UHF algebra is called a full nest algebra if it has a presentation lim(Q,,, ©,)
so that each embedding ¢, is a nest embedding, i.e., if for every n, ¢,(Lat Q) g—ﬁat Qnit,
where LatB denotes the lattice of invariant projections of B. See [7] for more details on full

nest algebras.

Proposition 26. Let Q be a full nest algebra, £ a closed Lie ideal in Q, and K the associative
ideal {x — w(z) |z € L£}. If Dx is inductive, then

Dx =span{p|p € Lat Q,pQp* C K} .

Proof. If Px. = span{p|p € Lat Q,pQp* C K}, then clearly P is a closed subspace of . To
see that D C Py, we first show that for any n > 1, D N Q,, C Px.

To this end, assume that d € DN Q, and d ¢ Px. Observe that Lat Q, = {qé{1 =
e ‘ 1<m< pk} where py, is the dimension of Q, and, moreover, since @ is a full nest

1111

algebra, Lat Q = |, Lat Qx. Since d & Py, we have that d # 0, d # Al for A € C, and
d ¢ span{q|q € Lat Q,, qQq" C K}, (4)

for any n.
Since d € ® N Q,,, we can write d = ) ", d;e;; ] for d; € C. Observe that

d=dy, "+ (d, 1 — dpn)qg[)’:]fl F ot (dy — dg) gt + (dy — )™
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Provided K is nonzero, (4) ensures there is some 1 < [ < r — 1 so that d; # d;;1 and
0Qq ¢ K. Now by [8, Lemma 2.3], ¢;Qq;* is generated by a sequence of matrix units
{fk}k>n, where f = elk]lkJr1 and [ is the position of the largest restriction of eEl in Q. Since

0Qgi- Z K, then for some k > n, fi, € K. A direct calculation shows that

[d, fr] = [prn(d), fr] = (di — dis1) fi -

Since d; # diy1 and fr ¢ K, then we have found an element of Q,, namely fi, so that
[d, fr] ¢ K. Hence, d ¢ Dy.

This shows that Dx N Q,, C Px N Q,, for all n > 1. Since by hypothesis Dy is inductive, it
follows that Dx C Pk.

To prove the reverse containment, first assume that Py is trivial, i.e., Px = {0,7}. Then
by the first part of the proof, we have that D N Q,, is trivial for all n, and so by inductivity
D is trivial.

Now let ¢ be a nontrivial invariant projection for Q so that ¢Qgt C K. Also, let e be a
matrix unit in Qy, i.e., an off-diagonal matrix unit. Since ¢ € Lat @, then e must belong to
one of ¢Qq, ¢~ Qq*, or ¢Qq*. In either of the first two cases, it is immediate that ge —eq = 0,
so [g,€] € K. If e € ¢Qq*, then ge = e and eq = (eqt)g = 0, s0 [g,¢] = e € ¢Qq* C K. Thus,
we have shown that for any matrix unit e in Qy, [g,e] € K. It follows that [¢,d] € K for all
d € Q,, and so ¢ lies in Dx. Since Dy is a closed subspace of 2, the proof is complete. O

3. NON-CLOSED LIE IDEALS IN TRIANGULAR UHF ALGEBRAS

In the proof of Step One of Proposition 21, we described the canonical projection 7 of the
UHF algebra A onto its canonical masa ® = QNQ*. Note that 7|g is in fact a homomorphism,
which should not be too surprising since it parallels the result for nest algebras. Indeed,

consider a,b € Q and the map

T A —> £9)
a|—>Zeaek

1
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Since mg(ab) = eMlapelfl o = Dor<t e¥laelf and b = > s<o fbelf], we see that

§ 7 it )

mat) = 3533 el (cblact) (clloed) i

i <t s<v

= 3 el

K [k k], [k
= Yl 3
{ J
= m(a)mg(b).

But this means that 7(ab) = limgmg(ab) = limy 7 (a)mg(b) = w(a)w(b), and so 7|g is a
homomorphism, as claimed. In particular, therefore, if a = a® € Q, then 7(a) = 7(a?) = 7(a)’
and so 7(a) is an idempotent in D.

It is well-known that if Q is a unital associative algebra and E denotes the (non-closed)
linear span of the idempotents in Q, then E is a Lie ideal of Q [6]. Our present goal is to
show that in the case where Q is a triangular UHF algebra as above, E is not closed. (In
contrast, note that in B(#), every element is the span of at most 8 idempotents. On the other
hand, the set of compact operators is an AF algebra for which F consists of the finite rank
operators. At the other end of the spectrum, C([0, 1]) has only the trivial idempotents, whose
span is nowhere dense. Although the linear span of the idempotents in a UHF algebra A is
dense, it is not known whether or not it is closed, and hence all of A.)

Now if @ € Q is idempotent, then o(a) € {0,1}. Soif ¢ = Aja; + Asas+. ..+ A\ua, is a linear
combination of idempotents, then 7(¢) = Y | Aiw(a;) is a linear combination of idempotents
in the commutative Banach algebra ©. But then o(7(q)) C >, Mio(n(a;)) and hence it has
finite cardinality. Clearly ® contains many elements with infinite spectrum, and thus 2 is not
spanned by its idempotents. We conclude that neither is Q, and therefore E is an example of

a non-closed Lie ideal of Q.
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