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1 Introduction

Characterizing linear maps on spaces of matrices or operators that preserve certain
subsets or properties have been an active area of research for quite a while. Of these so
called linear preserver problems, one of the most basic is arguably the rank-one preservers.
Indeed several other questions about preservers may be reduced to, or solved with the
help of, rank-one preservers. This has been observed in [10] and [14]. For example,
preserving commutativity ([4], [15], [17]), spectrum ([7], [13]) or invertibility [16] involve
rank-one preservers. Classifying isomorphisms of several types of operator algebras is
frequently accomplished by exploiting the fact that they preserve rank one operators;
see, e.g. [5; Chapter 17].

The linear rank one preservers on the space of all n x n matrices was characterized
by Marcus and Moyls [11]. They show that every such map is a composition of a left
multiplication L4 by an invertible matrix A, a right multiplication Rz by an invertible
matrix B, and possibly the transpose map. Related results may be found in [2], [3], [6],
[8], [9] and [12]. More recently, Omladic and Semr] [14] characterized surjective additive
maps on the space of finite rank operators on real or complex Banach spaces. In case of
finite dimensional spaces, they show that every such a map is a composition of the three
types of maps described above and a fourth type induced by an automorphism of the
underlying field.

The main purpose of this paper is to characterize additive rank one preserving maps
on algebras of block upper triangular matrices (§§5, 7). In addition to the four types of
maps described above, we identify a fifth type which we may occur. Furthermore, we
also identify linear rank one preserving maps on fairly general subspaces of matrices (§3).

Let us now fix some notation and terminology. By M,,,(F), we denote the space of
all m X n matrices over an arbitrary field F, and as usual M,, = M,,,,. Given two vectors
u € F™ and v € F’, we shall denote by v ® v the m X n matrix uv’, which we may
associate with the operator z — (v'z)u from F* onto F™. It is obvious that a matrix A
has rank one if and only if A = u ® v for nonzero u and v. The standard basis for F*
is denoted by {ex}}_,, i.e. e1 = (1,0,...,0), e; = (0,1,0,...,0), etc. the matrix units
e; ® e; are denoted by Ej;.

A map ¢ from a space S; of matrices into a space S, of matrices is said to preserve
matrices of rank one if o(T) is of rank one whenever T has rank one. It is said preserve
rank one matrices in both directions when ¢(T') is of rank one if and only if 7" has rank one.
A left multiplication L, is the map T — AT for a fixed matrix A. Right multiplications
Rp are defined analogously.

We make use of a particular permutation matrix J given by

00 ... 01
00 ... 10

J=: (1)
0 1 00
10 00



i.e J = [0;nt14), where § is the Kronecker delta symbol. If T* denotes the transpose of
T, then it is straightforward to verify that

T+ := JT'J (2)

maps the algebra of upper triangular matrices onto itself and preserves rank-one matrices.
We observe that T — T may also be described as the transpose with respect to the
anti-diagonal, i.e., the ”diagonal” that contains the positions (7,1 + n — 7).

We will also find it useful to define a space of rank one matrices to be a subspace S
of matrices with the property that all non-zero matrices in S have rank one.

2. Preliminaries

We prove a lemma which will be used frequently in the following sections.

Lemma 2.1. Assume that x1, T2, u are nonzero vectors in F* and that vy, y2, v are
nonzero vectors in ™ and that each of the three linear transformations:

Ci=u®v+21Q1y;, Co=u®@uv+22Q1ys, C3=uRV+2 QY1+ T2RYs+T1 QYo

s of rank one, then:

(i) If z1, o are linearly independent and y,, yo are linearly independent then
URU =Ty D Y1.

(i1) If x1, o are linearly independent but y1, yo are linearly dependent then v is
a scalar multiple of vy, .

(iii) If x1, xo are linearly dependent but y,, yo are linearly independent then u is
a scalar multiple of x1.

(iv) If both pairs {x1, xo} and {y1, y=} are linearly dependent then u is a scalar
multiple of x1 or v is a scalar multiple of v, .

Proof. (i) If u,z; are linearly independent, then v = c¢;y; for some ¢; € F, since
rank C; = 1. Now v, y, are linearly independent and so u = cyx5 for some cy € F, since
rank Co = 1. Now C3 = 21 ® (y1 + ¥2) + Z2 @ (c1¢oy1 + y2) has rank one, implying that
y1 + yo and cicoyy + yo are linearly dependent, hence cico = 1 and u ® v = 29 ® ¥;.
On the other hand if u = ¢z, then v = ¢y since rank Cy = 1, and hence C3 =
(crea + 1)1 @ Yo + 21 ® Y1 + T2 ® Yo which is never of rank one.

Parts (ii), (iii), (iv) are quite easy to verify. |
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3. Linear maps

In this section, we characterize rank one preserving linear maps on fairly general subspaces

of matrices.

Theorem 3.1. Let £ be a subspace of My, (F) satisfying the following conditions:
(a) £ contains £o @ F* for some xy € F™,
(b) £ contains F™ & yo for some yy € F*,
(c) £ is spanned by its rank one matrices.

Let ¢ : £ — My, (F) be a linear mapping preserving rank one matrices. Then either

(i) m <k, n<I, and there exists a k x m matriz A of rank m and an n x [
matriz B rank n such that:

o(T) = ATB for every T € &;

or

(i) m <1, n <k, and there exists a k X n matriz A of rank n and an m x [
matriz B rank m such that:

¢(T) = AT'B for every T € &;

or

(1ii) @(£) is a space of rank one matrices.
Before proving Theorem 3.1, we state two immediate corollaries.

Corollary 3.2. With the same notation as above, if ¢ preserves rank one, then either
© preserves every rank, i.e., rank o(T) = rank T for every T € £, or ¢(£) is a space of
rank one matrices.

Corollary 3.3. With the same notation as above, if ¢ preserves rank one in both direc-
tions, then:

(a) ¢ is of the form (i) or (ii) of Theorem 3.1;
(b) @ is injective;

(c) @ preserves every rank.

Proof of Theorem 3.1. The image under ¢ of (2o ® F”) is a vector space of rank one
matrices. Then p(zo @ F*) =V ® vy or ug @ W for some subspace V' of F* and a vector
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vy € F or a subspace W of F and a vector uy € F*. Replacing ¢ by the map (T') = ¢(T?)
if necessary, we may assume with no loss of generality that ¢(zy ® F*) = uo ® W. Since
the kernel of ¢ contains no matrices of rank one, then dim W = n. Consequently [ > n
and ¢o(zp ® y) = up ® g(y) for some injective linear transformation g : F* — F, i.e.
o(rg @ y) = ug ® Bty for an n x | matrix B of rank n.

Similarly, ¢(F™ ® ) is a space of rank one matrices and hence takes one of the two
forms mentioned above. We consider two cases.

Case 1. o(F™ ®@yp) C u; ® F. Therefore (2 ® yy) = u1; ® h(z) for an injective linear
transformation h. Since ¢(zy ® yo) = ug ® w = u; ® w' for nonzero vectors w and w',
then ug and u; are linearly dependent. But u; is only determined up to a multiplicative
scalar, hence we may assume that ug = u;.

We show that the image under ¢ of every rank one matrix in £ is contained in uy @ F,
and consequently ¢(£) C uy ® F. Assume, to the contrary, that there exist nonzero
vectors x,y, u, v such that p(z ® y) = v ® v and {ug, u} are linearly independent. Let
K=z ®uy, and

Ky=(x+z)®y, Ki=2Q(y+wy) and Kis= (z+ z0) ® (y + vo)
and let C; = ¢(K;);1 < j < 4. Thus C,Cy, Cs,Cy are all of rank one, C; =u ® v,
Co =u®u+uy®g(y), C; =u®v+uy®@h(z) and Cy = u®v+uo® (h(z)+9(y)+9(vo))-

Since u and ug are linearly independent, we conclude that v = ag(y) = Bh(z) = vg9(vo)
for nonzero scalars «, 8 and ~. It follows that ¢((8z — yzo) ® yo) = 0 contradicting the
rank one preserving property. This establishes that ¢(£) C uy ® F, a space of rank one
matrices.

Case 2. ¢(F" ®1,) C F* ®v,. As before, we have that p(z®1) = AT®uy, for a k xm
matrix of rank m, i.e., an injective linear transformation from F" into F*. Furthermore,
uo @ Blyg = ¢(x0 @ yo) = Azo @ vg. After absorbing a constant in uy and v if necessary,
we may assume that Azy = vy and Blyy = vp.

Now consider an arbitrary rank one matrix K1 =x ® y € £. Let

Ky=(x+1)Qy, Ki=zQ (y+1y) and Ky = (z+ z9) ® (y + )

and let C; = ¢(Kj);1 < j < 4. Thus C,Csy,Cs,Cy are all of rank one. If C; = u ® v,
then

Cy = u®v+uy®@Bly, C3 =u®v+Ar®vy and C) = u®v+uy® B'y+ Az Q@vy+1uo@vy.

If ug, Az are linearly independent and vy, B'y are linearly independent, then by Lemma
2.1, we conclude that
o(z®y) = Az ® By.

On the other hand, if Az = cug for a scalar ¢, then p((z — cxy) ® yo) = Az @ vy —
cug ®vg = 0. Thus (z — cxy) @ Yo is not of rank one, and so x = czy. In this case, we also
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get o(z @ y) = cup ® Bly = Az ® B'y. A similar argument proves the same conclusion
when B'y and v, are linearly dependent. Therefore ¢(z ® y) = A(z ® y)B, for every
rank one matrix z ® y € £. jFrom condition (c) we conclude that ¢(7') = AT B for every
Teg |

We will now give a couple of examples to illustrate that conditions (a) and (b) in Theorem
3.1 cannot be removed. It is quite easy to construct examples violating condition (c).

Example 3.4. Let £ be the subspace of M3 spanned by E1, E1s, Fas, Es3, F33 and define
p: £ — Mj; by

(AR AP 0 a1 0 0
@ 0 ax ax3||=|a2 axn a3
0 0 Q33 0 0 Q33

Example 3.5. Let £ = My @ M,, identified as usual with a subspace of My and define
p: L — My by

ay bl 0 0 ai + ag bl + b2 Co dg
C1 d1 0 0 o C1 d1 0 0
Pl1o 0 a b|| | o 0O 0 0
0 0 c¢o do 0 0 0 O

In either example, it is clear that ¢ preserves rank one matrices, and that the image of ¢
is not a space of rank one matrices. It is easy to verify that there do not exist matrices
A and B, invertible or not, such that ¢(T) = ATB or ¢(T) = AT'B.

4. Triangular algebras

For every finite sequence of positive integers n,, ng, . . . ng, satisfying n;+no+...+nx = n,

we associate an algebra T (ny, no,...n,) consisting of all n x n matrices of the form

An A ... An
0 A .. A
A ) 22 2k (3)
0 0 ... A

where A;; is an n; X n; matrix. We call such an algebra a block upper triangular algebra.

Associated with such an algebra 2 is its chain of invariant subspaces

{0}=VycViC...CV,=F",
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ie.,
Vi=span{e;: 1 <i<nj+ns+...+n;}

It is evident that the triangular algebra 2 is the set of all operators leaving every V;
invariant. We also make use of the subspaces

W; =span{e; :n1+no+...+nj_1 <i<ng+ne+...+n,}

These are the subspaces corresponding to the diagonal blocks. We have V; =W, @ ... ®
W;, in particular F* =W, @ ... @ W,

A special case of block upper triangular algebras is the algebra 7, (F) of upper trian-
gular matrices. In this case W; = span(e;) and V; = span{e; - --¢;}.

Our first lemma is a standard fact and quite easy to prove. First, we fix some notation.
For a subspace V of F", we denote, as usual, its orthogonal complement with respect to
the standard dot product by V+. Thus, we have VjL =Win®...0W,.

Lemma 4.1. Let A be a block upper triangular algebra, and let {V; : 1 < j < k} be its
chain of invariant subspaces. The rank one matriz x @ y € A if and only if x € V; and
S Vf_l for an indezx j; (1 < j < k).

Proof. Omitted.

Lemma 4.2. Let A, B be invertible matrices in M, (F), and 2 be a block upper triangular
algebra in My (F). If the mapping T — AT B maps A into A, then A, B € 2

Proof. Take any z € Vj, then 2 ® z € % for every z € V;-,, and so A(z ® 2)B =
Az ® B'z € 2. As B is invertible, the space {B'z | z € Vj-,} has the same dimension
as Vj{ 1, and so Az € V. This shows that A leaves every V; invariant, and thus, A € 2.
By a similar argument, we also have B € 2. |

Lemma 4.3. Let A, B be invertible matrices in M,(F), and A and B be block upper
triangular algebras in M, (F). If the mapping ¢ defined by ¢(T) = AT B maps 2 onto B,
then A =B, and A,B € &

Proof. First we observe that ¢~! exists and that ¢~ !(T) = A7'TB~!. Denote the
chain of invariant subspaces of 2 (respectively, B) by {V; : 1 < j < k} (respectively,
{Vi:1<j<¥k}).

Now, take x € V; we know that z @ F* € 2. As B is invertible, we have Az @ F* =

A(z ® F*)B and so Az @ F* € 8. Therefore Az € V] and hence AV} C V/. The same
argument applied to ¢! gives us A7'V} C V;. Therefore dim V; = dim V/.

Now take z € V,. Then x ® Vit € 2 and so Az ® BVt € 8. As dim (B'V) =
dim V;- = dim V/*, we conclude that Az € VJ. Thus AV, C V/ and using ¢! we get
that A='V] C V4 and hence that dim V5 = dim V.
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Continuing in this fashion, one sees that the dimension of every block in 21 agrees
with the dimension of the corresponding block in %. Thus 2 = 8. Now it follows from
lemma 4.2 that A, B . |

We are now in position to apply the results of §3 to triangular algebras.

Theorem 4.4. Let 2 and B be block upper triangular algebras in M, (F) and M,,(F)
respectively, and let ¢ : A — B be a surjective linear mapping preserving rank one
matrices. Then m =n, B =2A or A" and

o(T) = ATB or o(T)=AT'B

where A and B are invertible matrices in B and T — T is the transpose relative to the
anti-diagonal as in equation (2). Consequently ¢ is bijective and preserves every rank.

Proof. By Theorem 3.1, we have two cases.

Case 1: m > n and ¢(T) = AT B, where A and B are matrices of size m x n and
n x m respectively, and each has rank n. As the map ¢ is onto, there exists T € 2 such
that ATyB = I,,,, the m x m identity matrix. But this is possible only when n > m. So
we have n = m, and the result now follows from Lemma 4.2.

Case 2: m > n and there exist matrices C' and D of rank n such that ¢(T) = CT'D.
As in case 1, we get that n = m. We may now write ¢(T) = CJT*JD, where J is the
matrix in equation (1). Let A= CJ, B=JD, and ¥(T) = CJTJD, a map from 2" to
8. Now it follows from lemma 4.2 that AT = % and that A, B€ 8. |

Remarks. 1. The second form of ¢ may be written as ¢(T) = (ATB)*, where A and
B are now in 2, rather than 8.

2. Both forms of ¢, may be present when 2 = A", i.e., when the sizes ny,...n; of the
diagonal blocks satisfy n; = ng_;1.

3. Even for such highly structured spaces of matrices as triangular algebras it is
possible to have a rank one preserving map whose range is a space of rank one matrices
as the following example illustrates.

Example 4.5. Define ¢ : T3(F) — T3(F) by

a11 Q12 G13 G11 + G + G33 Q12 + Q23 Q13
® 0 axp ax||= 0 0 0
0 0 ass3 0 0 0

Then ¢ preserves rank one.



5. Surjective additive maps

In this section, we characterize surjective additive, rather than linear, mappings on trian-

gular algebras that preserve rank one. As in [OS], the proofs are quite a bit more delicate
than the corresponding proof for the linear case. As to the form of such maps, in addition
to left multiplications, right multiplications and ”transposing”, other ”elementary” rank
one preservers appear, which we will presently describe.

5.1. Assume that ¢ — ¢ is an automorphism of F, and C' = [c¢;;] € M, (F). We denote
the matrix [¢;;] by C. The map C — C preserves every rank.

5.2. Let each of fi, fo,... f be an additive mapping from F to F such that f; is bijective,
and let f = (f1, fo,... fn). Define a mapping f on a triangular algebra 2 = T (n;...ny),
with n; =1, by

Ci1 Ci2 ... Cip filewr)  folenn) + e ooo fulenn) +cin
f_ 0 Coo ... Copn _ 0 Co9 Ce Con
0 0 ... cup 0 0 .. Cnn

ie.,

A A

f(CnEn) = ifj(cll)Elj; f(CEij) = CEz'j if (i,j) 7é (1, 1)>

Jj=1

This is a surjective additive mapping on 2 and it preserves rank one matrices, but only
when n; = 1.

5.3. For f and fi, fo,... f, as above, define a mapping f on a triangular algebra 2 =
T(ny...ng), with ng =1, by

Ci1 Ci2 ... Cin
0 ¢y ... Cop cii 2 --- folcan) Fcin
il e
. 0 0 P fQ(Cnn) + cniln
0 0 ... coun
0 0 Tt Cnn 0 0 T fl(cnn)

~

ie., f(C) = (f(CM))". Again this is an additive mapping on 2 preserving rank one
matrices, but only when n; = 1.

Next we recall a classical definition.
Definition 5.4. A mapping ¢ from a vector space V' to a vector space W, is said to
be semilinear if it is additive and if there exists an automorphism f : F — F such that

o(Av) = f(A)p(v) for every A € Fand v € V.
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Now, we state the main theorem in this section. The casen =2 and %A =T, = T (1, 1),
the upper triangular 2 x 2 matrices is exceptional as will be seen in Example 6.2. We
should point out however that the theorem is valid for 2 = My = 7(2).

Theorem 5.5. Let 2 = T (ny...ng) be a block upper triangular algebra in M, (F), such
that A # T(F). Let ¢ : A —> 2 be a surjective additive mapping that preserves rank one
matrices. Then ¢ is a composition of some or all of the following maps:

(i) Left multiplication by an invertible matriz in 2A.

(i1) Right multiplication by an invertible matriz in 2A.

(iii) The map C +— C, induced by a field automorphism a — @ of F.

(iv) The map f defined in 5.2 above, but only when ny = 1.

(v) The map f defined in 5.3 above, but only when ny = 1.

(vi) The transpose with respect to the antidiagonal T — TT. This is present only
when A = AT, i.e., nj = ng_;j1 for every j.

Thus the restriction of ¢ to the space

M:={[cij] €A : c;1=0if ny =1, and ¢y, =01if np =1}
1s semilinear. In particular, if ny > 2 and ng > 2, then ¢ is semilinear.

Before proving Theorem 5.5, we state a couple of corollaries.

Corollary 5.6. If ¢ is as in Theorem 5.5, then:
(a) ¢ is injective;

(b) ¢ preserves every rank, i.e., rank o(T) = rank T, for every T € 2.

Corollary 5.7. Let 2 be a block upper triangular algebra in M, (R), over the field of real
numbers, and assume that each of the first and last diagonal block has size at least 2 X 2.
Then every additive surjective rank one preserving mapping ¢ : A — A s linear.

Proof of Corollary 5.7. It is well-known that the identity is the only automorphism
of the field of real numbers; see, e.g., [1; p. 58] 1

The proof of Theorem 5.5 will be accomplished via several lemmas. We find it conve-
nient to deal with mappings between slightly different triangular algebras 2 and % having
the same dimension, and show that % must = 2 or 2", in addition to the conclusions of
Theorem 5.5.
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Lemma 5.8. Let 2 = T(ny...ng) and B = T (my...my) be block upper triangular
algebras in M, (F) such that dim 2 = dim B > 3. If ¢ : 2 — B is a surjective additive
mapping that preserves rank one matrices, then there exist nonzero vectors ugy, vy € F*,
and injective additive mappings g, h : F* — " such that either:

vler®y) =uo ® g(y) and p(z @ e,) = h(z) @ vy, for x,y € F". (5.8.1)
or

vler®y) =g(y) @uo and p(z R e,) = vo @ h(z), for x,y € F". (5.8.2)

Proof. The image under ¢ of (2o ® F*) is an additive group of rank one matrices. It
follows that ¢(e; @ F*) = uy ® G or G ® ug for some uy € F* and an additive subgroup
G of F*. It follows easily that there exists an injective additive mapping g : F* — F*,
such that

(@) pler®y)=u®g(y); or (b) ple1®y)=g(y)® uo.
Similarly

(a)" p(z®e,) =h(zr) ®vy; or (b) ¢(r®e,) =uvyQ h(x).
for some vy € F* and an injective additive mapping h : F* — F”.

To prove the lemma, we must show that it is not possible to have equations (a) and
(b)" satisfied simultaneously. The impossibility of (a)’ together with (b) may be proved
similarly. Towards this end, assume that p(e; ®y) = uo®g(y) and p(z®e,) = Vo h(z).
Thus ue®g(en) = ¢(e1®e,) = vo®h(er). It follows that ug and vg are linearly dependent,
and since each is determined up to a multiplicative scalar, we may assume with no loss
of generality that ug = vy. We now proceed exactly as in the proof of Theorem 3.1 (case
1), to conclude that ¢(A) C ug ® F*, contradicting surjectivity. 1

5.9. If ¢ satisfies equations (5.8.2), we may replace ¢ by the map ¢ : 2 — BT
defined by o1 (T) = (¢(T))". In view of this, we shall henceforth assume that ¢ satisfies
equations (5.8.1) in addition to the hypotheses of lemma 5.8.

For the following lemma, we recall that {V,, Vi ..., Vi} is the chain of invariant sub-
spaces of 2.

Lemma 5.10. Let £, == e; QF UF* Q e, and £9 := ug QF* UF" @ vy. Let E @1 be a
rank one matriz in A, with £ € Vj, n € Vﬁl such that (€ ® n) & Lo, Then:

(1) o(§®n) =h(§) ® g(n).
(it) o(r Q@ y) = h(z) @ g(y) for every x € V; and y € V}_l.

(11i) For every c € F, there exists ¢ € F, independent of x and y, such that h(cz) =
¢h(z) and g(cy) = ég(y) for everyx € V; and y € V;-L_l.
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Furthermore, if % # T2(F), then there exists an invariant subspace V;, with dim V; > 2
and dim V", > 2, such that the conclusions of parts (ii) and (iii) hold.

Proof. (i) Consider K; = £ ® 7,
Koy=(+e)®n Ky=E®(M+e,) and Ks=({+e1)®(n+ey)

and proceed exactly as in the proof of Theorem 3.1 (case 2).

(ii) For any z € V}, we have

plr®n) =pE®n) + oz —-E @n).

If o(x — &) ®@n ¢ £, the by part (i), we have p((z — &) ® n) = h(z — &) ® g(n) and so

px®@n) = h(€) ®@g(n) +h(z - &) ®g(n) = h(z) @g(n).

On the other hand, if p(z — &) ® n € £5, then p(z ®@n) ¢ £5, and again by applying part
(i) directly to = ®n, we get p(z®n) = h(x) ® g(n). For an z € V; and y € V-, we may
repeat the above argument using the equation

plrey)=9pl@en) +e@®(y—mn))

to reach the desired conclusion.

(iii) Assume that z € V; and y € V;L_ , and c € F. First we observe that dim V; > 2
and dim ijl > 2, since otherwise, £ ® n € £1, and hence (£ @ n) € £o. It follows that
e2€Vjand e, 1 €V and r®e, 1 and e; ® y € A So

hicz)® g(en1) = plcz @ ep 1) = p(z @ ce, 1) = h(z) @ g(ce, 1).

Therefore there exists a scalar ¢ such that g(ce, 1) = ée, 1 and consequently h(cz) =
¢h(z). Considering p(z ® cy) yields that g(cy) = ég(y).

As to the last assertion of the lemma, we note that since ¢ is surjective, there exists
a rank one matrix in 2 whose image under ¢ is not in £5. The result now readily follows.

For the purpose of the next lemma, we define the support of an n x n matrix C' = [¢;;],
to be the subset of indices (7,7) for which ¢;; # 0 and we denote it by supp C. For a
collection C of matrices, we define supp C by supp C = U{supp C : C € C}. We denote
the cardinality of a set X by card X. We also recall the matrix units E;; = e; ® e;.

We continue to assume that ¢ is as in 5.8, and satisfies equation (5.8.1). We also
assume that B # 75(F), which implies that % # 75(F).

Lemma 5.11. Let A be the support of 2, and let J be the the subset of all (i, ) for which
(p(EZ]) Q £o. Then:
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(i) {¢(Ei;) : (i,7) € I} are linearly independent.

(it) Span {¢(Ei;) : (4,5) € I} is disjoint from £,.
(iii) I consists of all indices (i,7) € A for whichi>2 and j <n — 1.
(v) If t @y & £1, then (x @ y) & La.

(v) If x @ y € M, then p(z @ y) = h(z) @ g(y).

(vi) ug € Wy and vy € Wy, in particular when ny = 1, we may take ug = e; and
when n, = 1, we may take vy = e,

Proof. Define Ay = {(i,j) € A:i>2and j <n — 1}. It follows from Lemma 5.10 that
if T = E;; with (4,7) € I, then ¢(span{T'}) C span{¢(T’)}, and so

p(span{Ey; : (i,4) € I}) € span{p(Ey) = (i,j) € I}.

Every matrix in % may be written as L+ E where L € £ and E € span{E;; : (i,j) € I}.
S0

B = () C (1) + p(span{Ey : (i,7) € I}) C Lo +span{p(Ej;) : (4,7) € I}
Thus,
dim B < dim £y +card J < (2n — 1) + card J < (2n — 1) + card Ay = dim 2L.

But dim %8 = dim 2, so all of the above inequalities become equalities. Assertions (i)-(iv)
and (vi) are immediate.

To prove (v), we first notice that the conclusion has been established for z ® y ¢ £;
in Lemma 5.10 together with part (iv). If x ® y € £;, then z is a scalar multiple of e; or
y is a scalar multiple of e,. In the former case, we have e ® y € % and € £;. Then

pr@y) =plea®y) +((x —e2) ®y) = h(e2) ® g(y) + h(z — e2) @ g(y) = h(x) @ g(y).

A similar calculation establishes the result when y is a scalar multiple of e,. 1

Lemma 5.12. There exists an automorphism ¢ — ¢ of F such that o(cT) = ép(T) for
every T' € M and c € F, where M is defined in the statement of Theorem 5.5.

Proof. Define
U, := span{es, ...e,} or F* according as n; = 1 or not,
and

Uy, := span{ey,...e, 1} or F* according as ny = 1 or not.
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Take x € Uy, and y € U, with x @y € A. By lemma 5.11, we have p(z®y) = h(z) ® g(y).
We also know that e @ y € A and = ®@ e, 1 € 2. Exactly as in Lemma 5.10 (iii), this
leads to the existence of a function ¢ +— ¢ such that ¢(cR) = ép(R) for every rank one
R € 9, and as M is the span of its rank one matrices, ¢(cT') = ép(T) for every T € M. It
remains to show that ¢ — ¢ is an automorphism. Additivity and surjectivity are obvious.
The map is multiplicative as ¢1c29(T) = ¢(c162T) = é1p(coT) = é1629(T). Finally the
map is injective since its kernel is obviously not all of F, and being an ideal, it must then

be {0}. 1

Lemma 5.13. There exists invertible matrices A and B in M, (F) and a surjective rank
one preserving mapping @ : A — ATIBB™! such that:

(i) v is a composition of 2, the multiplication operators La, Rg, and the map-
ping C' — C induced by a field automorphism.

(ii) The restriction of o to M is the identity mapping.

Proof. Define ¢; by ¢1(C) = ¢(C). Then ¢, is a surjective rank one preserving mapping
from 2 to B and q|M is linear. Furthermore, there exist injective linear mappings h;
(respectively, g1), from U), (respectively, U,) into F* such that ¢1(z @ y) = hi(z) ® g1(y)
for all z @ y € m. (Here Uj, and U, are the spaces defined in the proof of the preceding
lemma). It is now easy to find invertible n x n matrices A and B such that hi(z) = Ax
for x € Uy, and ¢1(y) = B'y for y € U,. Define @o(T) = A '¢1(T)B*. Both assertions
of the lemma are easily verified. |

Lemma 5.14. A =B and A, B € 2.

Proof. We will first show that 2 = A '8B 1. As ¢s(e1 @ U,) = e1 ® Uy, we get that
02(e1®F") C e; ®F”. Similarly, ¢2(F" ®e,,) C F* ®e,. Since 2 = M-+span Ey; +span E,,
we see that

AT'BB = 0 (A) C e QF" +F' ® e, C A

Since dim A™'8B™! = dim % = dim ¥, it follows that 2% = A~'B8B~!.
The function T+ AT B maps the triangular algebra % = A~'8B~! onto the trian-

gular algebra %8B. So, by Lemma 4.2, we get that the two algebras are equal and that A
and Bea. |

Lemma 5.15. The mapping @y of Lemma 5.13 is a composition of mappings f and g
defined in 5.2 and 5.3. The former is present only when ny =1 and the latter is present
only when n; = 1.

Proof. First assume that n; = 1. As before , we have ps(e; ® y) = e; ® go(y) for
an injective additive mapping go on F*. In particular oy(ci1 E11) = X7, fj(c11)Eyy for
additive maps f1, fo, ... f, on F. Next we show that f; is bijective. Surjectivity is obvious.
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To prove bijectivity, assume that fi(c) = 0. Then py(cE1 — X7, fij(c)Ey;) = 0. Thus
¢ = 0, since otherwise ¢, annihilates a rank one matrix. This proves injectivity. If n; > 2,
then ¢y|(span Fip) is the identity, and we may take f = (id,0,...,0), where id is the
identity.

The case ny = 1 is dealt with similarly, showing the existence of an additive mapping
g = (9gn,---,91), such that po(cpnEnn) = -1 9j(Cnn) Ejn. It is now straightforward to
verify that ¢, is a composition of f and g 1

Conclusion: Theorem 5.5 now follows from Lemmas 5.8 to 5.15. When ¢ satisfies
equations (5.8.1), we have written as a composition of maps of the form (i) -(v). In the
alternative case, the map @1 : T — (¢(T))" is a composition of the same maps. |

6. Counter-examples

In this section we give examples related to section 5. We provide examples to illustrate
that the hypothesis of surjectivity in Theorem 5.5 is indispensable, to show that 7 is
indeed an exceptional case and to show that unlike the linear case, the condition that ¢
preserves rank one matrices in both directions does not imply surjectivity and does not
imply that ¢ has a form resembling that of Theorem 5.5.

We will find the following facts useful:

(i) R = R? as additive groups for all positive integers d. This is true as each of
R, R? is isomorphic to Q° where c is the cardinality of the continuum.

(ii)) A field F may be isomorphic to a proper subfield of itself. Indeed if K is an
arbitrary field and t is an indeterminate, then t — t3 induces an isomorphism

(e}

between K(t) and K(t?). For a concrete example, we have Q(7) = Q(73).

In each of the following examples, we have an additive rank one preserving mapping
that is not of the form of Theorem 5.5 and also the range is not included in a space of
rank one matrices. Example 4.5 provides a linear map with range included in a space of
rank one matrices.

Examples 6.1. Let f : R** — R be an additive-group isomorphism and then define
mappings ¢ : T3(R) — T5(R) and ¢ : T3(R) — 72(R) by

ap a as a1 0 f(ag,as,a4,as5)
%) 0 a4 as =10 O 0
0 0 ag 0 0 ag
ar g2 ds I A f(a2, ag, G4, a5)
(" 0 ay as =1lo a
0 0 as 6
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The mapping ¢ is not surjective, while 1 is bijective but maps 7,, onto 7, where
m # n.

The next example shows that 75(R) is indeed exceptional even when ¢ preserves rank
one matrices in both directions in addition to being bijective.

Example 6.2. Let f : R — R be an additive-group isomorphism and define ¢ :
T2(R) — Ta(R) by
ap; Qa2 .
gp( 0 6122D B

In the linear case, we have seen that surjectivity, together with preserving rank one,
is equivalent to preserving rank one in both directions. Our next examples illustrate the
difference in the additive case. They show that preserving rank one in both directions
does not give us the forms in Theorem 5.5. We give three examples for three different
types of matrix algebras, namely 7,, block triangular algebras, and the full matrix algebra
M,

ann  f(ai2) ]

0 Q22

Examples 6.3. Let F be a field which is isomorphic to a proper subfield F' such that
[F:F] > 3. (As usual [F: F] is the dimension of F as a vector space over F.) Let 6 be
an isomorphism from F to F'. Let 7,7, be elements of F such that 1,7, 7y are linearly
independent over F. For instance, we may take F = Q(), F = Q(73), m = 7, mp = 7>
and f(r(r)) = r(n?) for every rational expression 7(x) € Q(z). Define ¢ : T;(F) — T4(F)
and 9 : T(1,2)(F) — T(1,2)(F) and x : M3(F) — M;5(F) by

a1 Q2 a1z Q14 0(a11) 6(ar2) O(arz) +mb(ass) 6(ara) + m6(aszs)
0 0 Q92 Q93 QA24 _ 0 0(0,22) 0(&23) + 71'20(&33) 0(0,24) + 71'20(@34)
0 0 33 QAa34 0 0 0(&33) 0(&34)
0 0 0 44 0 0 0 0(&44)
a1 G2 G013 | 9(G11) 0(&12) + 7T19(CL32) 9(G13) + 7T19(G33)
@b 0 Q99 Q93 = 0 0(0,22) + 7T20(U,32) 9(0,23) + 7T20((L33)
0 azz A3z | 0 0 0
a11 Q12 013 [ flan) + flas)m f(a) + f(ase)m  flaws) + f(ass)m
X || @ ag2 a3 = | fla21) + flasi)ma  f(aze) + flas2)ma  flazs) + f(ass)ms
as; as2 as3 i 0 0 0

Using the fact that a nonzero matrix has rank one if and only if every 2 X 2 submatrix
has zero determinant, it is straightforward to verify that each of the three maps preserves
rank one matrices in both directions and is injective.
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7. Additive maps preserving rank one in both directions

As seen in Examples 6.3, additive maps that preserve rank one in both directions need

not be of a form resembling the forms described in Theorem 5.5. We show, however,
that the only ”obstruction” is the fact that the field F may be isomorphic to a proper
subfield of itself. When this is not the case, we obtain a form for such maps that is nearly
identical to the form of Theorem 5.5. The details are slightly less delicate than the proofs
in §5.

Remark: Each of the following fields is not isomorphic to a proper subfield of itself.
Finite fields and their algebraic closures; the field of (real or complex) algebraic numbers;
finite extensions of Q, and the field R of real numbers. All this is easy to verify. For the
field R, we may also refer to [1; p. 58].

Of course, every prime field, i.e. Q or Z, (for a prime p), is not isomorphic to a proper
subfield of itself, but in this case additive maps are automatically linear.

Definition 7.1. A mapping ¢ from a vector space V' to a vector space W, is said to be
quasi-linear if it is additive and if there exists a nonzero ring-endomorphism # : F — F
such that ¢(Av) = 0(A)p(v) for every A € F and v € V. It should be noted that the map
f is an isomorphism from F onto a subfield of itself.

In the following theorem, we again assume that 21 # 7. Example 6.2 shows that this is
necessary.

Theorem 7.2 Let F be a field that is not isomorphic to a proper subfield of itself, let
A =T (ni...ng) be a block upper triangular algebra in M, (F) such that % # T5(F). Let
@A —> A be an additive mapping that preserves rank one matrices in both directions.
Then ¢ is a composition of some or all of the maps (i) - (iv) of Theorem 5.5, except that
the map f1 (in 5.2 and 5.3) is only required to be injective rather than bijective.

The restriction of ¢ to the space

M:={[c;;] €A : cu=0if ny =1, and ¢,y =0if 0y =1}
1s semilinear. In particular, if ny > 2 and ny > 2, then ¢ is semilinear.
Furthermore, ¢ s injective and it preserves every rank.

Again, we prove Theorem 7.2 via several lemmas.

Lemma 7.3. (Cf. Lemma 5.8). Let A = T (ny...ng) be a block upper triangular algebra
in M, (F) and let ¢ : %4 — M, (F) be an additive mapping that preserves rank one
matrices in both directions. Then there exrist nonzero vectors ugy, vy € F*, and injective
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additive mappings g,h : F* — F* such that ¢ satisfies equations 5.8.1 or equations
5.8.2.

Proof. The vectors ug, vy and the mappings g, h are established exactly as in the first
paragraph of the proof of Lemma 5.8. Upon examining the remainder of the proof of
Lemma 5.8, we see that it suffices to show that it is not possible to have p(e; ® y) =
uo @ ¢g(y) and ¢(z @ e,) = up @ h(z).

If this is the case, then consider T, = e; ® y + = ® e,; with each of the pairs
{z, e1} {y, e,} linearly independent. Each T}, has rank two and ¢(T,,) = u ® (h(z) +
9(y)). Thus h(z) + ¢g(y) = 0, since otherwise the image of a rank two matrix has rank
one. Upon replacing x by e; + x, we get that h(e;) = 0. But then the image of e; ® e,
is zero, a contradiction. |

The next lemma replaces lemmas 5.10 and 5.11.

Lemma 7.4. Let £, and £5 be as in Lemma 5.10 and let x @ y be a rank one matriz in
A, but not in £,. Then:

(i) oz ®@y) & Lo.

(i1) h(x), ug are linearly independent and g(y), vo are linearly independent.

(ii) p(z @ y) = h(z) ® g(y).

proof. (i) If p(z ® y) € £o, then p(z ® y) = up ® w or w ® vy. In the former case,
we consider the rank two matrices K, := z ® y + e; ® 2, where z and y are linearly
independent. ¢(K,) = ug ® (w + g(z)). Thus w + g(z) = 0 for every z that is not a
scalar multiple of y. This contradicts the injectivity of ¢g. If ¢(K;) = w ® vy, a similar
calculation leads to a contradiction.

(ii) Consider K1 =z ® v,
Kiy=(z+e)Qy, Ks=2®(y+e, and Ky=(z+e1)Q (y+e,)

and let C; = ¢(K;);1 < j < 4. Thus Cy, Cy,Cs,Cy are all of rank one. If C; = u® v,
then

Co = u®u+ue®g(y), C3 = uRv+h(z)Quy and C; = u®v+ue®g(y)+h(x)Ruo+ue@up.

If wg, h(x) are linearly dependent or vy, g(y) are linearly dependent, then by Lemma 2.1,
we conclude that p(z ® y) € £, contradicting (i)

(iii) Applying lemma 2.1 again to C4, Cy, C3, Cy, we now conclude, in view of, (ii) that
plz®y) =h(z)©9(y). 1
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Lemma 7.5. Assume that ¢ is as above and that A # T2(F). Then there erists a ring
homomorphism ¢ — ¢ from F into F such that ¢(cT) = ép(T) for every T € M and ¢ € F.
Thus the restriction of ¢ to M is quasi-linear. In particular if F is not isomorphic to a
proper field of itself, then ¢ — ¢ is an automorphism of F and |9 is semilinear.

Proof. First consider a rank one matrix x @ y ¢ £;, then by Lemma 7.4 (iii) we know
that ¢(x ® y) = h(x) ® g(y). This may now be extended to all matrices e; ® y (similarly
T ®ey,) that are in 9, via the equation ¢(e; ® cy) = p(e2 @ cy) + p((e1 —e2) ® cy). Thus,
for all z ® y € M we have p(z ® y) = h(z) ® g(y).

Now exactly as in the proofs of Lemma 5.10(iii) and Lemma 5.13, we see that h(cx) =
¢h(z) and g(cy) = ég(y), for a mapping ¢ +— ¢ from F into itself. Thus ¢(cT") = ép(T)
for every T € 9. We see that ¢ — ¢ is additive, multiplicative and injective as in Lemma
5.13. Thus ¢|9m is quasi-linear. Also, ¢ — ¢ is surjective if F is not isomorphic to a proper
subfield of itself, yielding ¢ — ¢ and automorphism and ¢|9 semilinear. |

Lemma 7.6. Assume that ¢ and A are as above. Assume further that F is not isomorphic
to a proper subfield of itself. Then ¢ is a composition of a mapping C — C induced by a
field automorphism and an additive mapping 1 : A — M, (F) that preserves rank one
in both directions with ¢1|9M linear.

Proof. Define ¢;(C) = ¢(C). The results are easily verified. |

We continue to make the same assumptions as in Lemma 7.6.

Lemma 7.7. There ezists invertible matrices A and B in M, (F) and a rank one pre-
serving mapping o : % — M, (F) such that:

(i) p1(T) = Ap2(T)B

(ii) The restriction of o to M is the identity mapping.

Proof. Exactly as in Lemma 5.14. |

Lemma 7.8. The mapping @y of Lemma 7.7 is a composition of mappings f and g
defined in 5.2 and 5.3 with fi1 and g, injective. The former is present only when ny =1
and the latter is present only when ny = 1.

Proof. This is exactly as in Lemma 5.16 except that in this case f; and g; need not be
surjective. |

(7.9) Conclusion: Lemmas 7.3 to 7.8 constitute a proof for Theorem 7.2.
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