Triangle Decompositions

Peter J. Dukes

Graphs

A graph has a set of vertices (usually drawn as dots) with some edges (lines), each of which connects two vertices.

Triangle decompositions

Question: When can the edges be grouped into triangles? (Triangles can cross each other or touch at corners, but can't overlap on a whole edges!)

Triangle decompositions

Question: When can the edges be grouped into triangles? (Triangles can cross each other or touch at corners, but can't overlap on a whole edges!)

Triangle decompositions

If you succeed, you have found a triangle decomposition of the graph.

Oops

Sometimes, you might pick a triangle and find that you need to back up and start over.

Arithmetic conditions

For a graph to have a triangle decomposition, its number of edges must be a multiple of three.

Also, the number of edges touching each vertex (called its degree) must be even.

Arithmetic conditions

For a graph to have a triangle decomposition, its number of edges must be a multiple of three.

Also, the number of edges touching each vertex (called its degree) must be even.

But these conditions are not enough:

A geometric condition

Another way in which a graph might have no triangle decomposition is that the vertices can be divided into two sets a way that there are too many crossing edges.

Sudoku connection

	1	3	
1	2	4	3
3	4	1	
4	3	2	1

A guarantee for dense graphs

Theorem (Delcourt and Postle, 2019)
Suppose G is a large graph with

- number of edges a multiple of three;
- an even number of edges touching each vertex; and
- every vertex joined to at least 83% of the others.

Then G has a triangle decomposition.

A guarantee for dense graphs

Theorem (Delcourt and Postle, 2019)
Suppose G is a large graph with

- number of edges a multiple of three;
- an even number of edges touching each vertex; and
- every vertex joined to at least 83% of the others.

Then G has a triangle decomposition.

It is conjectured that 83% can be lowered to 75%.

Try out some worksheets, activities and games.
https://www.math.uvic.ca/~dukes/tridec.html

Have fun and thank you for watching!

온태N University Mathematics
 of Victoria \& Statistics

