
Math 101 - Calculus II
Euler’s relation and complex numbers

Complex numbers are numbers that are constructed to solve equations where square roots of negative
numbers occur. These numbers look like

1 + i, 2i, 1− i

They are added, subtracted, multiplied and divided with the normal rules of algebra with the additional
condition that i2 = −1. The symbol i is treated just like any other algebraic variable. So,

(2 + i)2 = (2 + i)(2 + i) = 2 · 2 + 2 · i + 2 · i + i2 = 4 + 4i− 1 = 3 + 4i

and
(x− i)(x + i) = x2 + x · i− x · i− i2 = x2 + 1.

This last example shows that when complex numbers are used, we are able to factor more expressions than
we can with real numbers. These numbers are also useful with the quadratic formula

x2 + x + 1 = 0 ⇒ x =
−1±

√
1− 4

2
=
−1± i

√
3

2
. (1)

The real and imaginary parts of a complex number are given by

Re(3− 4i) = 3 and Im(3− 4i) = −4.

This means that if two complex numbers are equal, their real and imaginary parts must be equal.
Next we investigate the values of the exponential function with complex arguments. This will leaf to the

well-known Euler formula for complex numbers. We start with the power series for ex and substitute x = iθ.
Therefore

ex =
∞∑

n=0

xn

n!
=
∞∑

n=0

(iθ)n

n!

= eiθ =
∞∑

n=0

inθn

n!
=
(

1− θ2

2!
+

θ4

4!
− θ6

6!
+ · · ·

)
︸ ︷︷ ︸

for n even

+
(

θ − θ3

3!
+

θ5

5!
− θ7

7!
+ · · ·

)
︸ ︷︷ ︸

for n odd

i

where we used i2 = −1 and arranged the terms into real and imaginary parts. Now if we recall the power
series for sine and cosine,

sin θ =
∞∑

n=0

(−1)nθ2n+1

(2n + 1)!
= θ − θ3

3!
+

θ5

5!
− θ7

7!
+ · · ·

cos θ =
∞∑

n=0

(−1)nθ2n

(2n)!
= 1− θ2

2!
+

θ4

4!
− θ6

6!
+ · · ·

we see that
eiθ = cos θ + i sin θ

which is Euler’s formula and has extensive uses in physics, electronics, electrical engineering and mathematics.
For example, if we substitute θ = π, we obtain

eiπ + 1 = 0

which combines five of the most important mathematical constants: 0, 1, i, π and e.
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Trigonometric identities can easily be proved using Euler’s formula. Here is a demonstration for the formulas
cos(θ1 + θ2) and sin(θ1 + θ2):

ei(θ1+θ2) = eiθ1+iθ2 = eiθ1 · eiθ2

cos(θ1 + θ2) + i sin(θ1 + θ2) = (cos θ1 + i sin θ1)(cos θ2 + i sin θ2)
= cos θ1 cos θ2 − sin θ1 sin θ2 + (sin θ1 cos θ2 + cos θ1 sin θ2)i

If we now equate the real and imaginary parts, we have

cos(θ1 + θ2) = cos θ1 cos θ2 − sin θ1 sin θ2,

sin(θ1 + θ2) = sin θ1 cos θ2 + cos θ1 sin θ2.

Next we give on application of Euler’s formula in finding roots of numbers. As an example, we will find
the three cube roots of one. Euler’s formula yields

ei2πn = cos 2πn + i sin 2πn = 1, for n = 0, 1, 2, 3, . . .

since sine and cosine both are 2π-periodic. Now this means by the property of exponentiation that

(1)
1
3 =

(
ei2πn

) 1
3 = e

2nπ
3 i = cos

2nπ

3
+ i sin

2nπ

3
, for n = 0, 1, 2.

The right hand side of this expression gives the three different values for n = 0, 1, 2, namely

(1)
1
3 = cos 0 + i sin 0 = 1 (n = 0)

= cos
2π

3
+ i sin

2π

3
= −1

2
+
√

3
2

i (n = 1)

= cos
4π

3
+ i sin

4π

3
= −1

2
−
√

3
2

i (n = 2)

The other values for different n just cycle through these same three values. You may check that the cube of
any one of these values simplifies to one of the three above. One may also obtain exactly the same roots by
factoring the polynomial x3 − 1 = 0, and using the quadratic formula in

x3 − 1 = (x− 1)(x2 + x + 1) = 0,

where the roots of x2 + x + 1 was obtained in (1).
One should not use the expression

√
−1 in place of the symbol i. The expression has many pitfalls, for

example √
−1 =

√
−1√

−1
1

=

√
1
−1√

−1√
1

=
√

1√
−1√

−1
√
−1 =

√
1
√

1 ⇒ −1 = 1.

Which step is wrong in the above argument?
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Sample problems on complex numbers

1. Calculate each of the following and express the result in the form a + bi:

(a) (1 + 2i)− (1 + 3i)

(b) (1 + 2i)(1 + 3i)

(c) (1 + 2i)2

(d) e
π
3 i

(e) e
π
6 i

(f) ie
π
6 i

(g)
1 + 2i

1 + 3i
(Hint: Let

1 + 2i

1 + 3i
= a + bi and multiply both sides by 1 + 3i.)

2. Find the three cube roots of −8 by solving the equation x3 + 8 = 0. One of the solutions is real and
the other two are complex. Hint: x3 + 8 = (x + 2)(x2 − 2x + 4).

3. Find the 6 sixth roots of 1 by examining the values of 1
1
6 =

(
ei2nπ

) 1
6 for various values of the integer n.

Solutions

1. (a) (1 + 2i)− (1 + 3i) = (1− 1) + (2− 3)i = −i

(b) (1 + 2i)(1 + 3i) = 1(1 + 3i) + 2i(1 + 3i) = 1 + 3i + 2i + 6i2 = 1 + 5i− 6 = −5 + 5i

(c) (1 + 2i)2 = (1 + 2i)(1 + 2i) = 1(1 + 2i) + 2i(1 + 2i) = 1 + 2i + 2i + 4i2 = 1 + 4i− 4 = −3 + 4i

(d) e
π
3 i = cos

π

3
+ i sin

π

3
=

1
2

+
√

3
2

i

(e) e
π
6 i = cos

π

6
+ i sin

π

6
=
√

3
2

+
1
2
i

(f) ie
π
6 i = i

(√
3

2
+

1
2
i

)
=
√

3
2

i +
1
2
i2 = −1

2
+
√

3
2

i

(g) Let
1 + 2i

1 + 3i
= a + bi. Then we have that

1 + 2i = (1 + 3i)(a + bi) = 1(a + bi) + 3i(a + bi) = (a− 3b) + (3a + b)i,

and consequently require that a − 3b = 1 and 3a + b = 2 (on equating the real and imaginary
components in the above expression). After solving for a = 7

10 and b = − 1
10 , we have conclude

that
1 + 2i

1 + 3i
=

7
10
− 1

10
i.

2. Because x3 + 8 = (x + 2)(x2 − 2x + 4) = 0 we have that either

x + 2 = 0 or x2 − 2x + 4 = 0.

Therefore

x = −2, or x =
2±

√
4− 16
2

=
2±

√
−12

2
= 1±

√
3i

when utilizing the quadratic formula for finding roots of x2 − 2x + 4 = 0. Therefore, the three cube
roots of −8 are

−2, 1 +
√

3i, and 1−
√

3i.
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3. It follows from Euler’s formula that
(
ei2nπ

) 1
6 = e

nπ
3 i = cos

nπ

3
+ i sin

nπ

3
. Due to the periodicity of

the sine and cosine functions, the 6 sixth roots are given by

n cos
nπ

3
+ i sin

nπ

3

0 1

1
1
2

+
√

3
2

i

2 −1
2

+
√

3
2

i

3 −1

4 −1
2
−
√

3
2

i

5
1
2
−
√

3
2

i
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